spindle dynamics
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 24)

H-INDEX

24
(FIVE YEARS 2)

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3359
Author(s):  
Dimitris Liakopoulos

In the yeast Saccharomyces cerevisiae DNA replication and spindle assembly can overlap. Therefore, signaling mechanisms modulate spindle dynamics in order to ensure correct timing of chromosome segregation relative to genome duplication, especially when replication is incomplete or the DNA becomes damaged. This review focuses on the molecular mechanisms that coordinate DNA replication and spindle dynamics, as well as on the role of spindle-dependent forces in DNA repair. Understanding the coupling between genome duplication and spindle function in yeast cells can provide important insights into similar processes operating in other eukaryotic organisms, including humans.


2021 ◽  
Author(s):  
Ho-Chang Jeong ◽  
Young-Hyun Go ◽  
Joong-Gon Shin ◽  
Yun-Jeong Kim ◽  
Min-Guk Cho ◽  
...  

Abstract Despite highly effective machinery for the maintenance of genome integrity in human embryonic stem cells (hESCs), the frequency of genetic aberrations during in-vitro culture has been a serious issue for future clinical applications. By passaging hESCs over a broad range of timepoints, we found that mitotic aberrations, such as the delay of mitosis, multipolar centrosomes, and chromosome mis-segregation, were increased in parallel with polyploidy compared to early-passaged hESCs (EP-hESCs) with normal copy number. Through high-resolution genome-wide approaches and transcriptome analysis, we found that culture adapted-hESCs with a minimal amplicon in chromosome 20q11.21 highly expressed TPX2, a key protein for governing spindle assembly and cancer malignancy. Consistent with these findings, the inducible expression of TPX2 in EP-hESCs reproduced aberrant mitotic events, such as the delay of mitotic progression, spindle stabilization, misaligned chromosomes, and polyploidy, suggesting that the increased transcription of TPX2 in culture adapted hESCs could contribute to an increase in aberrant mitosis due to altered spindle dynamics.


Author(s):  
Jan Tomaszewski ◽  
Paweł Dunaj ◽  
Bartosz Powałka ◽  
Marcin Jasiewicz

mBio ◽  
2021 ◽  
Author(s):  
Antonio de Jesús López-Fuentes ◽  
Karime Naid Nachón-Garduño ◽  
Fernando Suaste-Olmos ◽  
Ariadna Mendieta-Romero ◽  
Leonardo Peraza-Reyes

Meiosis consists of a reductional cell division, which allows ploidy maintenance during sexual reproduction and which provides the potential for genetic recombination, producing genetic variation. Meiosis constitutes a process of foremost importance for eukaryotic evolution.


2021 ◽  
Author(s):  
Alessandro Dema ◽  
Jeffrey van Haren ◽  
Torsten Wittmann

Chromosome segregation is accomplished by the mitotic spindle, a bipolar micromachine built primarily from microtubules. Different microtubule populations contribute to spindle function: Kinetochore microtubules attach and transmit forces to chromosomes, antiparallel interpolar microtubules support spindle structure, and astral microtubules connect spindle poles to the cell cortex [1,2]. In mammalian cells, End Binding (EB) proteins associate with all growing microtubule plus ends throughout the cell cycle and serve as adaptors for a diverse group of +TIPs that control microtubule dynamics and interactions with other intracellular structures [3]. Because binding of many +TIPs to EB1 and thus microtubule-end association is switched off by mitotic phosphorylation [4-6] the mitotic function of EBs remains poorly understood. To analyze how EB1 and associated +TIPs on different spindle microtubule populations contribute to mitotic spindle dynamics, we use a light sensitive EB1 variant, π-EB1, that allows local, acute and reversible inactivation of +TIP association with growing microtubule ends in live cells [7]. We find that acute π-EB1 photoinactivation results in rapid and reversible metaphase spindle shortening and transient relaxation of tension across the central spindle. However, in contrast to interphase, π-EB1 photoinactivation does not inhibit microtubule growth in metaphase, but instead increases astral microtubule length and number. Yet, in the absence of EB1 activity astral microtubules fail to engage the cortical dynein/dynactin machinery and spindle poles move away from regions of π-EB1 photoinactivation. In conclusion, our optogenetic approach reveals mitotic EB1 functions that remain hidden in genetic experiments likely due to compensatory molecular systems regulating vertebrate spindle dynamics.


2021 ◽  
Author(s):  
David Dang ◽  
Christoforos Efstathiou ◽  
Dijue Sun ◽  
Nishanth Sastry ◽  
Viji M Draviam

Time-lapse microscopy movies have transformed the study of subcellular dynamics. However, manual analysis of movies can introduce bias and variability, obscuring important insights. While automation can overcome such limitations, spatial and temporal discontinuities in time-lapse movies render methods such as object segmentation and tracking difficult. Here we present SpinX, a framework for reconstructing gaps between successive frames by combining Deep Learning and mathematical object modelling. By incorporating expert feedback through selective annotations, SpinX identifies subcellular structures, despite confounding neighbour-cell information, non-uniform illumination and variable marker intensities. The automation and continuity introduced allows precise 3-Dimensional tracking and analysis of spindle movements with respect to the cell cortex for the first time. We demonstrate the utility of SpinX using distinct spindle markers and drug treatments. In summary, SpinX provides an exciting opportunity to study spindle dynamics in a sophisticated way, creating a framework for step changes in studies using time-lapse microscopy.


2021 ◽  
Vol 220 (8) ◽  
Author(s):  
Junjie Huang ◽  
Zhuobi Liang ◽  
Cuirong Guan ◽  
Shasha Hua ◽  
Kai Jiang

WDR62 is a microcephaly-related, microtubule (MT)-associated protein (MAP) that localizes to the spindle pole and regulates spindle organization, but the underlying mechanisms remain elusive. Here, we show that WDR62 regulates spindle dynamics by recruiting katanin to the spindle pole and further reveal a TPX2–Aurora A–WDR62–katanin axis in cells. By combining cellular and in vitro experiments, we demonstrate that WDR62 shows preference for curved segments of dynamic GDP-MTs, as well as GMPCPP- and paclitaxel-stabilized MTs, suggesting that it recognizes extended MT lattice. Consistent with this property, WDR62 alone is inefficient in recruiting katanin to GDP-MTs, while WDR62 complexed with TPX2/Aurora A can potently promote katanin-mediated severing of GDP-MTs in vitro. In addition, the MT-binding affinity of WDR62 is autoinhibited through JNK phosphorylation-induced intramolecular interaction. We propose that WDR62 is an atypical MAP and functions as an adaptor protein between its recruiting factor TPX2/Aurora A and the effector katanin to orchestrate the regulation of spindle dynamics.


Author(s):  
Yen-Po Liu ◽  
Yusuf Altintas

Abstract The structural dynamics of a machine tool at the tool center point characterizes its vibration response and machining stability which affects productivity. The dynamics are mostly dominated by the spindle-holder-tool assembly whose main vibration mode can change during machining due to centrifugal forces, thermal expansion, and gyroscopic moments generated at high spindle speeds. This paper proposes the identification of the spindle's in-process modal parameters: natural frequency, damping ratio and modal constant, by using a limited number of vibration transmissibility and critical chatter stability measurements. The classical inverse stability solution, which tunes the modal parameters to minimize prediction errors in chatter stability limits, is augmented with vibration transmissibility under two methods: (1) transmissibility-enhanced inverse stability solution: the modal parameters are updated to minimize prediction errors in chatter stability, and vibration transmissibility; (2) artificial neural network (ANN)-integrated inverse stability solution: the ANN uses vibration transmissibility to estimate the natural frequency and damping ratio, such that the inverse stability solution only needs to identify the modal constant. While both methods are experimentally validated, it is shown that the transmissibility-enhanced inverse stability solution is a more effective approach than the time-consuming ANN alternative for the estimation of in-process spindle dynamics.


2021 ◽  
Author(s):  
Miguel Navarrete ◽  
Steven Arthur ◽  
Matthias Treder ◽  
Penny Lewis

The large slow oscillation (SO, 0.5-2Hz) that characterises slow-wave sleep is crucial to memory consolidation and other physiological functions. Manipulating slow oscillations can enhance sleep and memory, as well as benefitting the immune system. Closed-loop auditory stimulation (CLAS) has been demonstrated to increase the SO amplitude and to boost fast sleep spindle activity (11-16Hz). Nevertheless, not all such stimuli are effective in evoking SOs, even if they are precisely phase-locked. Here, we studied whether it is possible to use ongoing activity patterns to determine which oscillations to stimulate in order to effectively enhance SOs or SO-locked spindle activity. To this end, we trained classifiers using the morphological characteristics of the ongoing SO, as measured by electroencephalography (EEG), to predict whether stimulation would lead to a benefit in terms of the resulting SO and spindle amplitude. Separate classifiers were trained using trials from spontaneous control and stimulated datasets, and we evaluated their performance by applying them to held-out data both within and across conditions. We were able to predict both when large SOs will occur spontaneously, and whether a phase-locked auditory click will effectively enlarge them with an accuracy of ~70%. We were also able to predict when stimulation would elicit spindle activity with an accuracy of ~60%. Finally, we evaluate the importance of the various SO features used to make these predictions. Our results offer new insight into SO and spindle dynamics and provide a new method for online optimisation of stimulation.


Sign in / Sign up

Export Citation Format

Share Document