Unmanned ground vehicle simulation with the Virtual Autonomous Navigation Environment

Author(s):  
Christopher Goodin ◽  
Justin T. Carrillo ◽  
David P. McInnis ◽  
Christopher L. Cummins ◽  
Phillip J. Durst ◽  
...  
2021 ◽  
Author(s):  
Benjamin Christie ◽  
Osama Ennasr ◽  
Garry Glaspell

Unknown Environment Exploration (UEE) with an Unmanned Ground Vehicle (UGV) is extremely challenging. This report investigates a frontier exploration approach, in simulation, that leverages Simultaneous Localization And Mapping (SLAM) to efficiently explore unknown areas by finding navigable routes. The solution utilizes a diverse sensor payload that includes wheel encoders, three-dimensional (3-D) LIDAR, and Red, Green, Blue and Depth (RGBD) cameras. The main goal of this effort is to leverage frontier-based exploration with a UGV to produce a 3-D map (up to 10 cm resolution). The solution provided leverages the Robot Operating System (ROS).


ACTA IMEKO ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 9 ◽  
Author(s):  
Dario Calogero Guastella ◽  
Luciano Cantelli ◽  
Domenico Longo ◽  
Carmelo Donato Melita ◽  
Giovanni Muscato

In rough terrains, such as landslides or volcanic eruptions, it is extremely complex to plan safe trajectories for an Unmanned Ground Vehicle (UGV), since both robot stability and path execution feasibility must be guaranteed. In this paper, we present a complete solution for the autonomous navigation of ground vehicles in the mentioned scenarios. The proposed solution integrates three different aspects. The first is the coverage path planning for the definition of UAV trajectories for aerial imagery acquisition. The collected images are used for the photogrammetric reconstruction of the considered area. The second aspect is the adoption of a flock of UAVs to implement the coverage in a parallel way. In fact, when non-coverable zones are present, decomposition of the whole area to survey is performed. A solution to assign the different regions among the flying vehicles composing the team is presented. The last aspect is the path planning of the ground vehicle by means of a traversability analysis performed on the terrain 3D model. The computed paths are optimal in terms of the difficulty of moving across the rough terrain. The results of each step within the overall approach are shown.


Sign in / Sign up

Export Citation Format

Share Document