Stability analysis and tracking performance of fractional-order PI controller for a second-order oscillatory system with time-delay

Author(s):  
Talar Sadalla ◽  
Dariusz Horla ◽  
Wojciech Giernacki ◽  
Piotr Kozierski
2017 ◽  
Vol 66 (4) ◽  
pp. 693-704 ◽  
Author(s):  
Talar Sadalla ◽  
Dariusz Horla ◽  
Wojciech Giernacki ◽  
Piotr Kozierski

Abstract The paper aims at presenting the influence of an open-loop time delay on the stability and tracking performance of a second-order open-loop system and continuoustime fractional-order PI controller. The tuning method of this controller is based on Hermite- Biehler and Pontryagin theorems, and the tracking performance is evaluated on the basis of two integral performance indices, namely IAE and ISE. The paper extends the results and methodology presented in previous work of the authors to analysis of the influence of time delay on the closed-loop system taking its destabilizing properties into account, as well as concerning possible application of the presented results and used models.


2016 ◽  
Vol 39 (10) ◽  
pp. 1509-1521 ◽  
Author(s):  
Vedat Çelik ◽  
Mahmut Temel Özdemir ◽  
Gökay Bayrak

One of the controllers used in load–frequency control systems is the PI controller, taking account of time delay originating from measurement and communication. In control systems, along with the use of the fractional-order controller, computing parameter space exhibited stable behaviour on the controller parameters and analysing its efficiency have become a significant issue. This study focuses on computing the effects of the fractional integral order ( α) on the stable parameter space for the control of a one-area delayed load–frequency control system in the case of a fractional-order PI controller. The effect of time delay on the stable parameter space is also investigated at different fractional integral orders ( α) in the time-delayed system with fractional-order PI controller. For this purpose, a characteristic equation of the delayed system with the fractional-order PI controller is obtained, and the stable parameter spaces of the controller are computed according to the fractional integral order ( α) and time delay ( τ) values using the stability boundary locus method, which is graphics based. Moreover, the generalized modified Mikhailov criterion is used for testing the stability region on the Kp − Ki plane. The obtained results verified that the stability region on the Kp − Ki plane change depending on the α and τ.


Sign in / Sign up

Export Citation Format

Share Document