Experimental Verification of Discrete Linear-Quadratic-Gaussian Control System of Electro-Hydraulic Servodrive

Author(s):  
Jakub Mozaryn ◽  
Arkadiusz Winnicki ◽  
Michal Micewicz
2013 ◽  
Vol 446-447 ◽  
pp. 1165-1170
Author(s):  
Shu Yuan Ma ◽  
Bdran Sameh ◽  
Saifullah Samo ◽  
Aymn Bary

In this paper, the CVT shifting control system based on vehicle operating conditions is modeled and simulated using MATLAB/SIMULINK. The modeling stage begins with the derivation of required mathematical model to illustrate the CVT shifting control system. Then, Linear Quadratic Gaussian (LQG), Proportional- Integrated-Derivative (PID) and Pole Placement are applied for controlling the shifting speed ratio of the modeled CVT shifting system. Simulation results of shifting controllers are presented in time domain and the results obtained with LQG are compared with the results of PID and Pole placement technique. Finally, the performances of shifting speed ratio controller systems are analyzed in order to choose which control method offers the better performance with respect to the desired speed ratio. According to simulation results, the LQG controller delivers better performance than PID and Pole Placement controller.


1999 ◽  
Vol 45 (1) ◽  
pp. 55-64 ◽  
Author(s):  
V Belyakov ◽  
A Kavin ◽  
V Kharitonov ◽  
B Misenov ◽  
Y Mitrishkin ◽  
...  

Author(s):  
Yeesock Kim ◽  
Changwon Kim ◽  
Reza Langari

In this chapter, an application of a neuromorphic controller is proposed for hazard mitigation of smart structures under seismic excitations. The new control system is developed through the integration of a brain emotional learning-based intelligent control (BELBIC) algorithm with a proportional-integral-derivative (PID) compensator and a clipped algorithm. The BELBIC control is based on the neurologically inspired computational model of the amygdala and the orbitofrontal cortex. A building structure employing a magnetorheological (MR) damper under seismic excitations is investigated to demonstrate the effectiveness of the proposed hybrid clipped BELBIC-PID control algorithm. The performance of the proposed hybrid neuromorphic controller is compared with the one of a variety of conventional controllers such as a passive, PID, linear quadratic Gaussian (LQG), and emotional control systems. It is shown that the proposed hybrid neuromorphic controller is effective in improving the dynamic responses of structure-MR damper systems under seismic excitations, compared to the benchmark controllers.


2019 ◽  
Vol 46 (7) ◽  
pp. 0705004
Author(s):  
林海奇 Haiqi Lin ◽  
杨平 Ping Yang ◽  
孔庆峰 Qingfeng Kong ◽  
许冰 Bing Xu

Sign in / Sign up

Export Citation Format

Share Document