Optical pulse self-processing in nonlinear periodic systems

Author(s):  
Sargent
1988 ◽  
Vol 102 ◽  
pp. 243-246
Author(s):  
J.T. Costello ◽  
W.G. Lynam ◽  
P.K. Carroll

AbstractThe dual laser-produced plasma technique for the study of ionic absorption spectra has been developed by the use of two Q-switched ruby lasers to enable independent generation of the absorbing and back-lighting plasmas. Optical pulse handling is used in the coupling cicuits to enable reproducible pulse delays from 250 nsec. to 10 msec, to be achieved. At delay times > 700 nsec. spectra of essentially pure neutral species are observed. The technique is valuable, not only for obtaining the neutral spectra of highly refractory and/or corrosive materials but also for studying behaviour of ionic species as a function of time. Typical spectra are shown in Fig. 1.


1979 ◽  
Vol 40 (10) ◽  
pp. 1024-1024
Author(s):  
G. André ◽  
R. Bidaux ◽  
J.-P. Carton ◽  
R. Conte ◽  
L. de Seze

2018 ◽  
Vol 8 (5) ◽  
pp. 129-132
Author(s):  
V.V. Panichev ◽  
◽  
N.A. Solovyov ◽  
A.M. Semyonov ◽  
◽  
...  

AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 653-656
Author(s):  
Ying Gu ◽  
Lifen Chen ◽  
Wenliang Wang

2018 ◽  
Vol 1 (3) ◽  
pp. 2
Author(s):  
José Stênio De Negreiros Júnior ◽  
Daniel Do Nascimento e Sá Cavalcante ◽  
Jermana Lopes de Moraes ◽  
Lucas Rodrigues Marcelino ◽  
Francisco Tadeu De Carvalho Belchior Magalhães ◽  
...  

Simulating the propagation of optical pulses in a single mode optical fiber is of fundamental importance for studying the several effects that may occur within such medium when it is under some linear and nonlinear effects. In this work, we simulate it by implementing the nonlinear Schrödinger equation using the Split-Step Fourier method in some of its approaches. Then, we compare their running time, algorithm complexity and accuracy regarding energy conservation of the optical pulse. We note that the method is simple to implement and presents good results of energy conservation, besides low temporal cost. We observe a greater precision for the symmetrized approach, although its running time can be up to 126% higher than the other approaches, depending on the parameters set. We conclude that the time window must be adjusted for each length of propagation in the fiber, so that the error regarding energy conservation during propagation can be reduced.


Sign in / Sign up

Export Citation Format

Share Document