Power efficient SAR ADC with optimized settling technique

Author(s):  
Weiru Gu ◽  
Hao Zhou ◽  
Tao Lin ◽  
Zhenyu Wang ◽  
Fan Ye ◽  
...  
Keyword(s):  
Sar Adc ◽  
2018 ◽  
Vol 27 (14) ◽  
pp. 1850230 ◽  
Author(s):  
Samaneh Babayan-Mashhadi ◽  
Mona Jahangiri-Khah

As power consumption is one of the major issues in biomedical implantable devices, in this paper, a novel quantization method is proposed for successive approximation register (SAR) analog-to-digital converters (ADCs) which can save 80% power consumption in contrast to conventional structure for electroencephalogram (EEG) signal recording systems. According to the characteristics of neural signals, the principle of the proposed power saving technique was inspired such that only the difference between current input sample and the previous one is quantized, using a power efficient SAR ADC with fewer resolutions. To verify the proposed quantization scheme, the ADC is systematically modeled in Matlab and designed and simulated in circuit level using 0.18[Formula: see text][Formula: see text]m CMOS technology. When applied to neural signal acquisition, spice simulations show that at sampling rate of 25[Formula: see text]kS/s, the proposed 8-bit ADC consumes 260[Formula: see text]nW of power from 1.8[Formula: see text]V supply voltage while achieving 7.1 effective number of bits.


2021 ◽  
Author(s):  
Daniel Junehee Lee

file:///C:/Users/MWF/Downloads/Lee, Daniel Junehee.The 8-bit digital-to-time converter (DTC) to be used for a time-mode successive-approximation register analog-to-digital converter (SAR ADC) with a minimum power consumption and silicon area is presented. The architecture and the drawbacks of a conventional voltage-mode SAR ADC are discussed. The principle of time-mode circuits and benefits of their applications to mixed-signal circuits are explained. The architecture of a time-mode SAR ADC is presented. The need for an area and power-efficient DTC to be used for a time-mode SAR ADC is discussed. The principle of a DTC is explained and prior works on a DTC are reviewed. The principle of a phase interpolator (PI), to be used for a DTC, is explained and prior works on digital PIs are reviewed. The design of the proposed DTC is presented. Each block of the proposed DTC is explained using schematic and layout views. Optimal slope of the input of the PI and the condition for linear phase interpolation are investigated. Simulation results of the proposed DTC designed in TSMC 65 nm 1.0 V CMOS technology are provided. According to simulation results with BSIM4.4 device models only, the time resolution of 0.33 ps, a maximum operation frequency of 2.53 G Hz, the power consumption of 1.38 mW, and peak differential nonlinearity (DNL) and integral nonlinearity (INL) less than 0.14 least significant bit (LSB) and 0.49 LSB, respectively, for a nominal process (TT) and a temperature condition (27 C°) are achieved.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 30 ◽  
Author(s):  
Bala Dastagiri Nadhindla ◽  
K Hari Kishore

This brief presents a 10kS/s 14 bit 12.5 ENOB Successive Approximation Register Analog-to- Digital Converter for Cardiac Implantable Medical. For achieving power efficient operation, SAR ADC employ SAR control, a new power and noise efficient comparator topology, non- binary weighted capacitive DAC. The linearity of implemented SAR ADC is enhanced with the uniform geometry of non-binary weighted capacitive DAC.The proposed SAR ADC is implemented using 65nm CMOS technology. The latched comparator consumes a power of 2.4uW and it provides an ENOB of 12.6 at a supply voltage of 1V.The INL is between -2.7/+1.6 LSB and DNL is between -0.6/+1.4LSB. The FOM of ADC is 40fJ/conv. Step which is comparable with existing ADC topologies.


Author(s):  
Teng-Chieh Huang ◽  
Po-Tsang Huang ◽  
Shang-Lin Wu ◽  
Kuan-Neng Chen ◽  
Jin-Chern Chiou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document