A large-signal model of self-aligned gate GaAs FETs for high-efficiency power amplifier design

Author(s):  
M. Hirose ◽  
Y. Kitaura ◽  
N. Uchitomi
2014 ◽  
Vol 28 (15) ◽  
pp. 1888-1895 ◽  
Author(s):  
Yuehang Xu ◽  
Wenli Fu ◽  
Changsi Wang ◽  
Chunjiang Ren ◽  
Haiyan Lu ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 263
Author(s):  
Roberto Quaglia

In high-frequency power-amplifier design, it is common practice to approach the design of reactive matching networks using linear simulators and targeting a reflection loss limit (referenced to the target impedance). It is well known that this is only a first-pass design technique, since output power or efficiency contours do not correspond to mismatch circles. This paper presents a method to improve the accuracy of this approach in the case of matching network design for power amplifiers based on gallium nitride (GaN) technology. Equivalent mismatch circles, which lay within the power or efficiency contours targeted by the design, are analytically obtained thanks to geometrical considerations. A summary table providing the parameters to use for typical contours is provided. The technique is demonstrated on two examples of power-amplifier design on the 6–12 GHz band using the non-linear large-signal model of a GaN High Electron Mobility Transistor (HEMT).


2001 ◽  
Vol 49 (9) ◽  
pp. 1626-1633 ◽  
Author(s):  
Youngoo Yang ◽  
Young Yun Woo ◽  
Jaehyok Yi ◽  
Bumman Kim

2014 ◽  
Vol 519-520 ◽  
pp. 1089-1094
Author(s):  
Shan Wen HU ◽  
Long Xing Shi ◽  
G.P. Li

Hetero-junction Bipolar Transistors (HBTs) have become very promising devices for power amplifier design in different communication applications. This paper proposes an analytical large signal model to predict nonlinear behavior of InGaP/GaAs HBT. The proposed model is directly fitted from linear model elements using Fourier transfer functions. As a consequence, the proposed large signal model shows good insight of circuit nonlinear behavior, and can be used to analysis large signal parameters of power amplifier. Based on the proposed large signal model, power gain and phase variation of an emitter follower amplify stage under different bias conditions have been analyzed. The calculated results show that: both gain and phase properties exhibit reverse deviation in saturation compared with that in forward amplify region, and can be used to maximize the linearity of power amplifier.


Sign in / Sign up

Export Citation Format

Share Document