Nonlinear III-V HBT compact models: do we have what we need?

Author(s):  
J. Scott
Keyword(s):  
Author(s):  
James Damon

Abstract For a germ of a variety $\mathcal{V}, 0 \subset \mathbb C^N, 0$, a singularity $\mathcal{V}_0$ of ‘type $\mathcal{V}$’ is given by a germ $f_0 : \mathbb C^n, 0 \to \mathbb C^N, 0$ which is transverse to $\mathcal{V}$ in an appropriate sense so that $\mathcal{V}_0 = f_0^{\,-1}(\mathcal{V})$. If $\mathcal{V}$ is a hypersurface germ, then so is $\mathcal{V}_0 $, and by transversality ${\operatorname{codim}}_{\mathbb C} {\operatorname{sing}}(\mathcal{V}_0) = {\operatorname{codim}}_{\mathbb C} {\operatorname{sing}}(\mathcal{V})$ provided $n > {\operatorname{codim}}_{\mathbb C} {\operatorname{sing}}(\mathcal{V})$. So $\mathcal{V}_0, 0$ will exhibit singularities of $\mathcal{V}$ up to codimension n. For singularities $\mathcal{V}_0, 0$ of type $\mathcal{V}$, we introduce a method to capture the contribution of the topology of $\mathcal{V}$ to that of $\mathcal{V}_0$. It is via the ‘characteristic cohomology’ of the Milnor fiber (for $\mathcal{V}, 0$ a hypersurface), and complement and link of $\mathcal{V}_0$ (in the general case). The characteristic cohomology of the Milnor fiber $\mathcal{A}_{\mathcal{V}}(\,f_0; R)$, and respectively of the complement $\mathcal{C}_{\mathcal{V}}(\,f_0; R)$, are subalgebras of the cohomology of the Milnor fibers, respectively the complement, with coefficients R in the corresponding cohomology. For a fixed $\mathcal{V}$, they are functorial over the category of singularities of type $\mathcal{V}$. In addition, for the link of $\mathcal{V}_0$ there is a characteristic cohomology subgroup $\mathcal{B}_{\mathcal{V}}(\,f_0, \mathbf{k})$ of the cohomology of the link over a field $\mathbf{k}$ of characteristic 0. The cohomologies $\mathcal{C}_{\mathcal{V}}(\,f_0; R)$ and $\mathcal{B}_{\mathcal{V}}(\,f_0, \mathbf{k})$ are shown to be invariant under the $\mathcal{K}_{\mathcal{V}}$-equivalence of defining germs f0, and likewise $\mathcal{A}_{\mathcal{V}}(\,f_0; R)$ is shown to be invariant under the $\mathcal{K}_{H}$-equivalence of f0 for H the defining equation of $\mathcal{V}, 0$. We give a geometric criterion involving ‘vanishing compact models’ for both the Milnor fibers and complements which detect non-vanishing subalgebras of the characteristic cohomologies, and subgroups of the characteristic cohomology of the link. Also, we consider how in the hypersurface case the cohomology of the Milnor fiber is a module over the characteristic cohomology $\mathcal{A}_{\mathcal{V}}(\,f_0; R)$. We briefly consider the application of these results to a number of cases of singularities of a given type. In part II, we specialize to the case of matrix singularities and using results on the topology of the Milnor fibers, complements and links of the varieties of singular matrices obtained in another paper allow us to give precise results for the characteristic cohomology of all three types.


Author(s):  
M. Rencz ◽  
V. Sze´kely ◽  
B. Courtois

This paper deals with the application of dynamic compact thermal models of packages. First an algorithm and a methodology is presented, that was developed for the inclusion of compact electrical RC thermal models of packages into field solvers, to enable fast board level simulation with compact models of packages. Application examples demonstrate the advantages of the method. In the second part of the paper a method is presented for the generation of nonlinear compact models. Simulation experiments comparing linear and nonlinear compact models show that for small temperature excursions the use of linear models is acceptable, but in case of larger than 80°C temperature increases the use of linear models results in an about 20–30% regular error for the usual package structures.


2022 ◽  
Vol 18 (1) ◽  
pp. 1-26
Author(s):  
Mario Simoni ◽  
Giovanni Amedeo Cirillo ◽  
Giovanna Turvani ◽  
Mariagrazia Graziano ◽  
Maurizio Zamboni

Classical simulation of Noisy Intermediate Scale Quantum computers is a crucial task for testing the expected performance of real hardware. The standard approach, based on solving Schrödinger and Lindblad equations, is demanding when scaling the number of qubits in terms of both execution time and memory. In this article, attempts in defining compact models for the simulation of quantum hardware are proposed, ensuring results close to those obtained with standard formalism. Molecular Nuclear Magnetic Resonance quantum hardware is the target technology, where three non-ideality phenomena—common to other quantum technologies—are taken into account: decoherence, off-resonance qubit evolution, and undesired qubit-qubit residual interaction. A model for each non-ideality phenomenon is embedded into a MATLAB simulation infrastructure of noisy quantum computers. The accuracy of the models is tested on a benchmark of quantum circuits, in the expected operating ranges of quantum hardware. The corresponding outcomes are compared with those obtained via numeric integration of the Schrödinger equation and the Qiskit’s QASMSimulator. The achieved results give evidence that this work is a step forward towards the definition of compact models able to provide fast results close to those obtained with the traditional physical simulation strategies, thus paving the way for their integration into a classical simulator of quantum computers.


Sign in / Sign up

Export Citation Format

Share Document