Optimization of type-2 fuzzy weight for neural network using genetic algorithm and particle swarm optimization

Author(s):  
Fernando Gaxiola ◽  
Patricia Melin ◽  
Fevrier Valdez ◽  
Oscar Castillo
2017 ◽  
Vol 7 (1.1) ◽  
pp. 184
Author(s):  
Rincy Merlin Mathew ◽  
S. Purushothaman ◽  
P. Rajeswari

This article presents the implementation of vegetation segmentation by using soft computing methods: particle swarm optimization (PSO), echostate neural network(ESNN) and genetic algorithm (GA). Multispectral image with the required band from Landsat 8 (5, 4, 3) and Landsat 7 (4, 3, 2) are used. In this paper, images from ERDAS format acquired by Landsat 7 ‘Paris.lan’ (band 4, band 3, Band 2) and image acquired from Landsat 8 (band5, band 4, band 3) are used. The soft computing algorithms are used to segment the plane-1(Near infra-red spectra) and plane 2(RED spectra). The monochrome of the two segmented images is compared to present performance comparisons of the implemented algorithms.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2873 ◽  
Author(s):  
Dinh Thanh Viet ◽  
Vo Van Phuong ◽  
Minh Quan Duong ◽  
Quoc Tuan Tran

As sources of conventional energy are alarmingly being depleted, leveraging renewable energy sources, especially wind power, has been increasingly important in the electricity market to meet growing global demands for energy. However, the uncertainty in weather factors can cause large errors in wind power forecasts, raising the cost of power reservation in the power system and significantly impacting ancillary services in the electricity market. In pursuance of a higher accuracy level in wind power forecasting, this paper proposes a double-optimization approach to developing a tool for forecasting wind power generation output in the short term, using two novel models that combine an artificial neural network with the particle swarm optimization algorithm and genetic algorithm. In these models, a first particle swarm optimization algorithm is used to adjust the neural network parameters to improve accuracy. Next, the genetic algorithm or another particle swarm optimization is applied to adjust the parameters of the first particle swarm optimization algorithm to enhance the accuracy of the forecasting results. The models were tested with actual data collected from the Tuy Phong wind power plant in Binh Thuan Province, Vietnam. The testing showed improved accuracy and that this model can be widely implemented at other wind farms.


2020 ◽  
Vol 10 (9) ◽  
pp. 3041
Author(s):  
Cheng-Jian Lin ◽  
Shiou-Yun Jeng ◽  
Hsueh-Yi Lin ◽  
Cheng-Yi Yu

In this study, we proposed an interval type-2 fuzzy neural network (IT2FNN) based on an improved particle swarm optimization (PSO) method for prediction and control applications. The noise-suppressing ability of the proposed IT2FNN was superior to that of the traditional type-1 fuzzy neural network. We proposed dynamic group cooperative particle swarm optimization (DGCPSO) with superior local search ability to overcome the local optimum problem of traditional PSO. The proposed model and related algorithms were verified through the accuracy of prediction and wall-following control of a mobile robot. Supervised learning was used for prediction, and reinforcement learning was used to achieve wall-following control. The experimental results demonstrated that DGCPSO exhibited superior prediction and wall-following control.


Sign in / Sign up

Export Citation Format

Share Document