Validation of an inflation method for measuring the strength of engineered tissues

Author(s):  
M.T. Frey ◽  
K.A. Bush ◽  
K.L. Billiar
Keyword(s):  
2021 ◽  
Vol 22 (15) ◽  
pp. 7920
Author(s):  
Myroslava Mytsyk ◽  
Giulia Cerino ◽  
Gregory Reid ◽  
Laia Gili Sole ◽  
Friedrich S. Eckstein ◽  
...  

The therapeutic potential of mesenchymal stromal/stem cells (MSC) for treating cardiac ischemia strongly depends on their paracrine-mediated effects and their engraftment capacity in a hostile environment such as the infarcted myocardium. Adipose tissue-derived stromal vascular fraction (SVF) cells are a mixed population composed mainly of MSC and vascular cells, well known for their high angiogenic potential. A previous study showed that the angiogenic potential of SVF cells was further increased following their in vitro organization in an engineered tissue (patch) after perfusion-based bioreactor culture. This study aimed to investigate the possible changes in the cellular SVF composition, in vivo angiogenic potential, as well as engraftment capability upon in vitro culture in harsh hypoxia conditions. This mimics the possible delayed vascularization of the patch upon implantation in a low perfused myocardium. To this purpose, human SVF cells were seeded on a collagen sponge, cultured for 5 days in a perfusion-based bioreactor under normoxia or hypoxia (21% and <1% of oxygen tension, respectively) and subcutaneously implanted in nude rats for 3 and 28 days. Compared to ambient condition culture, hypoxic tension did not alter the SVF composition in vitro, showing similar numbers of MSC as well as endothelial and mural cells. Nevertheless, in vitro hypoxic culture significantly increased the release of vascular endothelial growth factor (p < 0.001) and the number of proliferating cells (p < 0.00001). Moreover, compared to ambient oxygen culture, exposure to hypoxia significantly enhanced the vessel length density in the engineered tissues following 28 days of implantation. The number of human cells and human proliferating cells in hypoxia-cultured constructs was also significantly increased after 3 and 28 days in vivo, compared to normoxia. These findings show that a possible in vivo delay in oxygen supply might not impair the vascularization potential of SVF- patches, which qualifies them for evaluation in a myocardial ischemia model.


2021 ◽  
Vol 5 (2) ◽  
pp. 021503
Author(s):  
Muhammad Anwaar Nazeer ◽  
Ismail Can Karaoglu ◽  
Onur Ozer ◽  
Cem Albayrak ◽  
Seda Kizilel

2021 ◽  
Author(s):  
Ian S. Kinstlinger ◽  
Gisele A. Calderon ◽  
Madison K. Royse ◽  
A. Kristen Means ◽  
Bagrat Grigoryan ◽  
...  

2010 ◽  
Author(s):  
David Levitz ◽  
Ardalan Ardeshiri ◽  
Jabeer Ahmed ◽  
Daniel S. Gareau ◽  
Steven L. Jacques

2007 ◽  
Vol 1 (2) ◽  
pp. 146-153 ◽  
Author(s):  
Chih-Chao Yang ◽  
Steve E. Ellis ◽  
Feng Xu ◽  
Karen J. L. Burg
Keyword(s):  

2008 ◽  
Vol 1139 ◽  
Author(s):  
Jeffrey T. Borenstein

AbstractThe emergence of BioMEMS fabrication technologies such as soft lithography, micromolding and assembly of 3D structures, and biodegradable microfluidics, are already making significant contributions to the field of regenerative medicine. Over the past decade, BioMEMS have evolved from early silicon laboratory devices to polymer-based structures and even biodegradable constructs suitable for a range of ex vivo and in vivo applications. These systems are still in the early stages of development, but the long-term potential of the technology promises to enable breakthroughs in health care challenges ranging from the systemic toxicity of drugs to the organ shortage. Ex vivo systems for organ assist applications are emerging for the liver, kidney and lung, and the precision and scalability of BioMEMS fabrication techniques offer the promise of dramatic improvements in device performance and patient outcomes.Ultimately, the greatest benefit from BioMEMS technologies will be realized in applications for implantable devices and systems. Principal advantages include the extreme levels of achievable miniaturization, integration of multiple functions such as delivery, sensing and closed loop control, and the ability of precision microscale and nanoscale features to reproduce the cellular microenvironment to sustain long-term functionality of engineered tissues. Drug delivery systems based on BioMEMS technologies are enabling local, programmable control over drug concentrations and pharmacokinetics for a broad spectrum of conditions and target organs. BioMEMS fabrication methods are also being applied to the development of engineered tissues for applications such as wound healing, microvascular networks and bioartificial organs. Here we review recent progress in BioMEMS-based drug delivery systems, engineered tissue constructs and organ assist devices for a range of ex vivo and in vivo applications in regenerative medicine.


Sign in / Sign up

Export Citation Format

Share Document