Inter-subject information contributes to the ERP classification in the P300 speller

Author(s):  
Minpeng Xu ◽  
Jing Liu ◽  
Long Chen ◽  
Hongzhi Qi ◽  
Feng He ◽  
...  
Keyword(s):  
Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3961
Author(s):  
Daniela De Venuto ◽  
Giovanni Mezzina

In this paper, we propose a breakthrough single-trial P300 detector that maximizes the information translate rate (ITR) of the brain–computer interface (BCI), keeping high recognition accuracy performance. The architecture, designed to improve the portability of the algorithm, demonstrated full implementability on a dedicated embedded platform. The proposed P300 detector is based on the combination of a novel pre-processing stage based on the EEG signals symbolization and an autoencoded convolutional neural network (CNN). The proposed system acquires data from only six EEG channels; thus, it treats them with a low-complexity preprocessing stage including baseline correction, windsorizing and symbolization. The symbolized EEG signals are then sent to an autoencoder model to emphasize those temporal features that can be meaningful for the following CNN stage. This latter consists of a seven-layer CNN, including a 1D convolutional layer and three dense ones. Two datasets have been analyzed to assess the algorithm performance: one from a P300 speller application in BCI competition III data and one from self-collected data during a fluid prototype car driving experiment. Experimental results on the P300 speller dataset showed that the proposed method achieves an average ITR (on two subjects) of 16.83 bits/min, outperforming by +5.75 bits/min the state-of-the-art for this parameter. Jointly with the speed increase, the recognition performance returned disruptive results in terms of the harmonic mean of precision and recall (F1-Score), which achieve 51.78 ± 6.24%. The same method used in the prototype car driving led to an ITR of ~33 bit/min with an F1-Score of 70.00% in a single-trial P300 detection context, allowing fluid usage of the BCI for driving purposes. The realized network has been validated on an STM32L4 microcontroller target, for complexity and implementation assessment. The implementation showed an overall resource occupation of 5.57% of the total available ROM, ~3% of the available RAM, requiring less than 3.5 ms to provide the classification outcome.


2021 ◽  
pp. 1-13
Author(s):  
P Loizidou ◽  
E Rios ◽  
A Marttini ◽  
O Keluo-Udeke ◽  
J Soetedjo ◽  
...  

2020 ◽  
Author(s):  
Luiza Kirasirova ◽  
Vladimir Bulanov ◽  
Alexei Ossadtchi ◽  
Alexander Kolsanov ◽  
Vasily Pyatin ◽  
...  

AbstractA P300 brain-computer interface (BCI) is a paradigm, where text characters are decoded from visual evoked potentials (VEPs). In a popular implementation, called P300 speller, a subject looks at a display where characters are flashing and selects one character by attending to it. The selection is recognized by the strongest VEP. The speller performs well when cortical responses to target and non-target stimuli are sufficiently different. Although many strategies have been proposed for improving the spelling, a relatively simple one received insufficient attention in the literature: reduction of the visual field to diminish the contribution from non-target stimuli. Previously, this idea was implemented in a single-stimulus switch that issued an urgent command. To tackle this approach further, we ran a pilot experiment where ten subjects first operated a traditional P300 speller and then wore a binocular aperture that confined their sight to the central visual field. Visual field restriction resulted in a reduction of non-target responses in all subjects. Moreover, in four subjects, target-related VEPs became more distinct. We suggest that this approach could speed up BCI operations and reduce user fatigue. Additionally, instead of wearing an aperture, non-targets could be removed algorithmically or with a hybrid interface that utilizes an eye tracker. We further discuss how a P300 speller could be improved by taking advantage of the different physiological properties of the central and peripheral vision. Finally, we suggest that the proposed experimental approach could be used in basic research on the mechanisms of visual processing.


2021 ◽  
Vol 11 (23) ◽  
pp. 11252
Author(s):  
Ayana Mussabayeva ◽  
Prashant Kumar Jamwal ◽  
Muhammad Tahir Akhtar

Classification of brain signal features is a crucial process for any brain–computer interface (BCI) device, including speller systems. The positive P300 component of visual event-related potentials (ERPs) used in BCI spellers has individual variations of amplitude and latency that further changse with brain abnormalities such as amyotrophic lateral sclerosis (ALS). This leads to the necessity for the users to train the speller themselves, which is a very time-consuming procedure. To achieve subject-independence in a P300 speller, ensemble classifiers are proposed based on classical machine learning models, such as the support vector machine (SVM), linear discriminant analysis (LDA), k-nearest neighbors (kNN), and the convolutional neural network (CNN). The proposed voters were trained on healthy subjects’ data using a generic training approach. Different combinations of electroencephalography (EEG) channels were used for the experiments presented, resulting in single-channel, four-channel, and eight-channel classification. ALS patients’ data represented robust results, achieving more than 90% accuracy when using an ensemble of LDA, kNN, and SVM on four active EEG channels data in the occipital area of the brain. The results provided by the proposed ensemble voting models were on average about 5% more accurate than the results provided by the standalone classifiers. The proposed ensemble models could also outperform boosting algorithms in terms of computational complexity or accuracy. The proposed methodology shows the ability to be subject-independent, which means that the system trained on healthy subjects can be efficiently used for ALS patients. Applying this methodology for online speller systems removes the necessity to retrain the P300 speller.


Sign in / Sign up

Export Citation Format

Share Document