Reduced Active Element Power-Law Proportional-Integral Controller Designs

Author(s):  
Stavroula Kapoulea ◽  
Costas Psychalinos ◽  
Ahmed S. Elwakil
Author(s):  
Viyils Sangregorio-Soto ◽  
Claudia L. Garzon-Castro ◽  
Gianfranco Mazzanti ◽  
Manuel Figueredo ◽  
John A. Cortes-Romero

Author(s):  
Mikuláš Huba ◽  
Igor Bélai

This article presents design and evaluation of filtered proportional–integral controllers and filtered Smith predictor–inspired constrained dead time compensators. Both are based on the integral plus dead time and on the first-order time delayed plant models. They are compared as for tuning simplicity, robustness and noise attenuation. Such a comparison, which presents a robustness test regarding the importance of the internal plant feedback approximation, may be carried out by performance measures built on deviations of the input and output transient responses from their ideal shapes. When combined with integral of absolute error measures of both solution types with the disturbance responses set as nearly equivalent, we can see that the filtered Smith predictor setpoint responses may be significantly faster than the filtered proportional–integral controller responses, more robust and, using higher-order filters, also sufficiently smooth. Furthermore, tuning of the possibly higher-order filters for filtered Smith predictor is simpler. Its overall design is more transparent and straightforward with respect to the control constraints, where the filtered Smith predictor requires some additional anti-windup measures.


Sign in / Sign up

Export Citation Format

Share Document