An approximate all-terminal reliability evaluation method for large-scale smart grid communication systems

Author(s):  
Wenjun Jin ◽  
Peng Yu ◽  
Ao Xiong ◽  
Qiang Zhang ◽  
Dan Jin ◽  
...  
Author(s):  
Miles H.F. Wen ◽  
Ka-Cheong Leung ◽  
Victor O.K. Li ◽  
Xingze He ◽  
C.-C. Jay Kuo

Concerns with global warming prompted many governments to mandate increased proportion of electricity generation from renewable sources. This, together with the desire to have more efficient and secure power generation and distribution, has driven research in the next-generation power grid, namely, the smart grid. Through integrating advanced information and communication technologies with power electronic and electric power technologies, smart grid will be highly reliable, efficient, and environmental-friendly. A key component of smart grid is the communication system. This paper explores the design goals and functions of the smart grid communication system, followed by an in-depth investigation on the communication requirements. Discussions on some of the recent developments related to smart grid communication systems are also introduced.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Sabih Güzelgöz ◽  
Hüseyin Arslan ◽  
Arif Islam ◽  
Alexander Domijan

Wireless, power line communication (PLC), fiber optic, Ethernet, and so forth are among the communication technologies on which smart grid communication infrastructure is envisioned to be built. Among these, wireless and PLC-based solutions are attractive considering the cost of initial deployment. Wireless communication deployment in smart grid covers a variety of environments such as indoor, outdoor, and electric-power-system facilities. Similar diversity is expected in PLC deployment as well covering low voltage (LV), medium voltage (MV), and high voltage (HV) segments of the grid. In spite of being attractive, wireless and PLC channels are very harsh posing great challenges to performance of communication systems. In proposing solutions to smart grid communication needs, two approaches are likely to be followed. One is based on the use of existing wireless and PLC technologies with some modifications, and the other relies upon developing novel communication protocols particularly addressing the smart grid needs. Both of these approaches require an in-depth knowledge of communication channel characteristics. The aim of this study is to reveal the wireless and PLC channel characteristics of smart grid environments in terms of several parameters such as path loss and attenuation, time dispersion, time selectivity, amplitude statistics, and noise characteristics.


Author(s):  
Shilpa Gupta ◽  
G. L. Pahuja

In parallel and distributed systems, multistage interconnection network (MIN) plays an important role for its efficient communication between processor and memory at a very low cost. A major class of MIN called Gamma network is known for its redundant network topology and is being used in broadband communication systems. The increased redundancy incorporation makes these networks more complex and hence reliability evaluation becomes complex. The performance evaluation of these network topologies requires reliability evaluation utilizing routing mechanism or techniques. In this paper, we have proposed four topologies of Gamma-Minus network using MUX and DEMUX. Terminal Reliability (TR), fault tolerance and routing schemes of Gamma-Minus network topologies proposed have been computed by utilizing different connection patterns of MUX/DEMUX. Also, performance indices such as TR, Reliability Cost Ratio (RCR), Fault Tolerance, etc. computed for different Gamma-Minus architectures have been compared with the existing Gamma networks, other than Gamma-Minus. All the performance indices for different Gamma-Minus topologies show improvement over the performance indices of different Gamma networks. The proposed Gamma-Minus architectures have been compared among themselves and also Gamma-Minus2 shows the best performance for all performance indices. To the best of our knowledge, most of the researchers have not compared fault tolerance and RCR performance measure.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Piotr Kiedrowski

This paper describes the last mile communication system solutions realized in PLC/RF hybrid technology, which is dedicated to Smart Grid communication subsystems, mainly for Smart Metering and Smart Lighting applications. The use of hybrid technology makes the system more efficient and more secure (still being of low cost, in terms of both implementation and operation). This paper proposes a novel parameter, PDR, to describe the performance of the communications in the last mile network. The communications are realized with the use of the narrowband power line communications technique, the low power wireless communications technique, and the combination of them. The cost analysis for the proposed solution is also done. Theoretical considerations, contained in the paper, are the result of the author’s experience in the design, implementation, and operation of the last mile Smart Grid communication systems, realized in the narrowband PLC or 433/868 MHz radio technology. These communication systems were developed for data acquisition and distribution between specific terminals, which are Smart Meters or Smart Lanterns. The aim of this paper is to outline superiorities of the hybrid technology, from which the most important is a low layer protection of the sensitive critical infrastructure, which undoubtedly is a last mile Smart Grid communication network.


Sign in / Sign up

Export Citation Format

Share Document