High-efficiency BGaN/AlN quantum wells for optoelectronic applications in ultraviolet spectral region

Author(s):  
Seoung-Hwan Park ◽  
Woo-Pyo Hong ◽  
Jong-Jae Kim ◽  
Bong-Hwan Kim ◽  
Doyeol Ahn
2004 ◽  
Vol 84 (26) ◽  
pp. 5359-5361 ◽  
Author(s):  
Th. Gruber ◽  
C. Kirchner ◽  
R. Kling ◽  
F. Reuss ◽  
A. Waag

2021 ◽  
pp. 413188
Author(s):  
Yue Dong ◽  
Wei Lin ◽  
Jinjian Yan ◽  
Changjie Zhou ◽  
Shuping Li ◽  
...  

2018 ◽  
Vol 11 (9) ◽  
pp. 091003 ◽  
Author(s):  
Valentin N. Jmerik ◽  
Dmitrii V. Nechaev ◽  
Alexey A. Toropov ◽  
Evgenii A. Evropeitsev ◽  
Vladimir I. Kozlovsky ◽  
...  

2019 ◽  
Author(s):  
Baiquan Liu ◽  
Yemliha Altintas ◽  
Lin Wang ◽  
Sushant Shendre ◽  
Manoj Sharma ◽  
...  

<p> Colloidal quantum wells (CQWs) are regarded as a new, highly promising class of optoelectronic materials thanks to their unique excitonic characteristics of high extinction coefficient and ultranarrow emission bandwidth. Although the exploration of CQWs in light-emitting diodes (LEDs) is impressive, the performance of CQW-LEDs lags far behind compared with other types of LEDs (e.g., organic LEDs, colloidal quantum-dot LEDs, and perovskite LEDs). Herein, for the first time, the authors show high-efficiency CQW-LEDs reaching close to the theoretical limit. A key factor for this high performance is the exploitation of hot-injection shell (HIS) growth of CQWs, which enables a near-unity photoluminescence quantum yield (PLQY), reduces nonradiative channels, ensures smooth films and enhances the stability. Remarkably, the PLQY remains 95% in solution and 87% in film despite rigorous cleaning. Through systematically understanding their shape-, composition- and device- engineering, the CQW-LEDs using CdSe/Cd<sub>0.25</sub>Zn<sub>0.75</sub>S core/HIS CQWs exhibit a maximum external quantum efficiency of 19.2%. Additionally, a high luminance of 23,490 cd m<sup>-2</sup>, extremely saturated red color with the Commission Internationale de L’Eclairage coordinates of (0.715, 0.283) and stable emission are obtained. The findings indicate that HIS grown CQWs enable high-performance solution-processed LEDs, which may pave the path for CQW-based display and lighting technologies.</p>


Sign in / Sign up

Export Citation Format

Share Document