Practical Implementation of Hybrid Energy Systems for Small Loads in Rural South Africa

Author(s):  
Kelebogile Confidence Meje ◽  
Lindiwe Bokopane ◽  
Kanzumba Kusakana
2021 ◽  
Vol 40 ◽  
pp. 101978 ◽  
Author(s):  
Masego Montwedi ◽  
Mujuru Munyaradzi ◽  
Luc Pinoy ◽  
Abhishek Dutta ◽  
David S. Ikumi ◽  
...  

2020 ◽  
Vol 13 (1) ◽  
pp. 93
Author(s):  
Wesam H. Beitelmal ◽  
Paul C. Okonkwo ◽  
Fadhil Al Housni ◽  
Wael Alruqi ◽  
Omar Alruwaythi

Diesel generators are being used as a source of electricity in different parts of the world. Because of the significant expense in diesels cost and the requirement for a greener domain, such electric generating systems appear not to be efficient and environmentally friendly and should be tended to. This paper explores the attainability of utilizing a sustainable power source based on a cross-breed electric system in the cement factory in Salalah, Oman. The HOMER software that breaks down the system setup was utilized to examine the application and functional limitations of each hybridized plan. The result showed that a renewable-energy (RE)-based system has a lower cost of energy (COE) and net present cost (NPC) compared to diesel generator-based hybrid electric and standalone systems. Although the two pure renewable hybrid energy systems considered in this study displayed evidence of no emissions, lower NPC and COE values are observed in the photovoltaic/battery (PV/B) hybrid energy system compared with photovoltaic/wind turbine/battery (PV/WT/B). The PV/WT/B and PV/B systems have higher electricity production and low NPC and COE values. Moreover, the PV/B has the highest return on investment (ROI) and internal rate of return (IRR), making the system the most economically viable and adjudged to be a better candidate for rural community electrification demands.


Sign in / Sign up

Export Citation Format

Share Document