Comparative harmonic analysis of power-quality indices in three-phase power systems

Author(s):  
Viorel Apetrei ◽  
Constantin Filote ◽  
Adrian Graur
2020 ◽  
Vol 39 (6) ◽  
pp. 8225-8235
Author(s):  
Bandla Pavan Babu ◽  
V Indragandhi

In an Electrical system, Power Quality (PQ) is becoming significant to all types of consumers. With the increase of power demand from end users, maintaining the quality of power within the limitations is a major problem. In this paper, harmonic analysis in a grid connected three phase induction motor is tested according to PQ international standards which are found in the International Electro technical Commission (IEC). These mentioned standards are maintained in the transmission line and fed to the induction motor through a regenerative grid simulator. With the results obtained, execution of this fuzzy control system can be investigated through the digital simulation, which is based on MATLAB-SIMULINK package. It provides human operands to constitute a knowledge base which is used for diagnosing power quality and capable of predicting abnormal operation in Industries.


This paper presents the simulation-based study and results of a three-phase shunt active power filter (SAPF) for power quality improvement. The power quality of the power systems is degraded because of the presence of non-linear loads at the consumer end. The SAPF can reduce the impact of harmonics caused by the non-linear loads. The analyzed SAPF system is modeled and simulated using MATLAB-Simulink workspace. The ultimate goal of this study is to improve the total harmonic distortion of the system as per the standards defined by IEEE-519.


2021 ◽  
Vol 19 ◽  
pp. 143-148
Author(s):  
S. Haidar ◽  
◽  
E. Moussa ◽  
M. El Hassan ◽  
M. Badawi El Najjar

This paper presents a Power Quality (PQ) virtual lab that can be used by electrical engineers (EE) to enhance their knowledge and awareness on power quality disturbances in accordance to power quality standards. It will offer the EE the facility to become more aware about the problems tackling power systems and nonlinear devices, and their effects on the power quality indices. This work is built using NI LabVIEW/Multisim and is composed out of many simulations and experiments each with its learning objectives. The established measured power quality indices are mainly the root mean square (RMS), the total harmonic distortion (THD), the distortion index (DIN), the telephone influence factor (TIF), the crest factor (CF), the voltage transformer product (VT), the current transformer product (IT), the displacement power factor (DPF), the true power factor (TPF) and the unbalance factor (UF). Each of these indices is measured and analyzed in order to check how they are affected by the PQ issues.


Author(s):  
Madhusmita Patro ◽  
Kanhu Charan Bhuyan

<p>Power quality has become an important factor in power systems, for consumer and household appliances. The main causes of poor power quality are harmonic currents, poor power factor, supply voltage variations etc. A technique of achieving both active current distortion compensation, power factor correction and also mitigating the supply voltage variations at load side is compensated by unique device UPQC presented in this thesis. This concept presents a multi loop based controller to compensate power quality problems through a three phase four wire unified power quality conditioner (UPQC) under unbalanced and distorted load conditions. Here the UPQC is constituted of two voltage source converters (VSC) connected via power link. The series compensator is connected to the line in series and injects the voltage and thus compensates for voltage issues; whereas the shunt compensator injects current thus compensating for current issues, and is connected in shunt to the line. The voltage injection to the line uses an injecting transformer. The injection transformer is later replaced with injection capacitors, thus eliminating the drawback of conventional UPQC. In this way a good power quality is maintained.</p>


Sign in / Sign up

Export Citation Format

Share Document