A tunable dielectric loaded structure with built in transverse mode suppression

Author(s):  
A. Kanareykin ◽  
A. Altmark ◽  
I. Sheinman
Author(s):  
Keyuan Gong ◽  
Zhaohui Wu ◽  
Yu-Po Wong ◽  
Yawei Li ◽  
Qi Liang ◽  
...  

Abstract This paper discusses influence of displacement and patterning of phase shifters for piston mode operation of the temperature compensated (TC) surface acoustic wave (SAW) resonator on SiO2/LiNbO3 structure. As the phase shifters, Cu metals placed on the top surface of SiO2 are considered. First, the conventional Cu stripes are chosen, and their displacement are considered from IDT aperture edges. It is shown that achievable transverse mode suppression is almost identical when the stripe shape is adjusted for each case. Next, Cu dots are considered as patterned phase shifters. It is shown comparable transverse mode suppression is possible also for this case. However, relatively strong SAW lateral leakage occurs when they are placed above IDT fingers. These results indicate that location and pattern can be added as design parameters for the phase shifters on SiO2. It is favorable for further enhancement of total device performances.


1972 ◽  
Vol 8 (6) ◽  
pp. 554-555 ◽  
Author(s):  
M. Lax ◽  
W. Louisell ◽  
C. Greninger ◽  
W. McKnight

2022 ◽  
Vol 128 (1) ◽  
Author(s):  
Xue Ii ◽  
Yinli Zhou ◽  
Xing Zhang ◽  
Jianwei Zhang ◽  
Yugang Zeng ◽  
...  

AbstractIn this study, we realize the high-power output of a single-mode 894 nm vertical-cavity surface-emitting laser (VCSEL) at high temperature. The effects of the dimensional parameters of oxide aperture and surface relief on the transverse mode and threshold gain of VCSEL were analyzed. Through collaborative optimization of the oxide aperture and relief, the VCSEL with 8 µm oxide aperture diameter and 5 µm surface relief inner diameter can operate at high temperature of 365 K with single-mode output power of 2.02 mW and side-mode suppression of 29.2 dB.


Author(s):  
Yiwen He ◽  
Yu-Po Wong ◽  
Qi Liang ◽  
Ting Wu ◽  
Jing-Fu Bao ◽  
...  

Abstract This paper discusses the applicability of double busbar design to surface acoustic wave (SAW) devices employing low-cut lithium tantalate (LT) with multi-layered structure. This design offers good energy confinement, scattering loss suppression and transverse mode suppression for a wide frequency range. In addition, the effectiveness of manipulating the slowness curve shape for transverse mode suppression is demonstrated. First, three different lateral edge designs are applied to the layered SAW configuration on low-cut LT, and their performances are compared using the periodic 3-dimensional finite-element method powered by the hierarchical cascading technique. Then, the discussion is extended to influence of the SAW slowness shape to the transverse mode suppression.


Sign in / Sign up

Export Citation Format

Share Document