DTC based BLDC Motor Controlled Centrifugal Pump Fed by PI-BFO Tuning Strategy for Buck-Boost Converter in Solar PV Array Water Pumping System

Author(s):  
Ghasem Shokri ◽  
Elahe Naderi ◽  
Mohsen Najafpour
Author(s):  
V Mounika and Tejavath Suhasini

This Paper Presents Novel DC-DC Converter Based Closed Loop Control of BLDC Motor for SPV fed Water Pumping System Solar Photovoltaic (SPV) Array fed Water pumping System Utilizing Buck-boost DC-DC Converter in order to extract the maximum available power from Solar system. Solar energy has the greatest availability compared to other energy sources. For such solar PV systems, maximum power point tracking control is preferred for efficient operation. This concept is dealing with INC method which is one of the MPPT methods. This study deals with a buck–boost converter controlled solar photovoltaic (SPV) array fed water pumping in order to achieve the maximum efficiency of an SPV array and the soft starting of a permanent magnet brushless DC (BLDC) motor. The current sensors normally used for speed control of BLDC motor are completely eliminated. The speed of BLDC motor is controlled through the variable DC-link voltage of a voltage-source inverter (VSI). The VSI is operated by fundamental frequency switching, avoiding the losses due to high-frequency switching, in order to enhance the efficiency of the proposed system.


Author(s):  
A Lalithasyamala and Dr.D Ravi Kishore

In this paper, analysis of solar power fed Brushless DC motor (BLDC) motor drive with a boost converter is presented for water pumping application in irrigation system. Nowa days, the usage of renewable PV source is increasing gradually, due to the encouragement of eco-friendly energy sources by providing subsidies for the installation in the initial states. In the agricultural sector, the water pump system requires a 3-ϕ power supply, for that we need a separate transmission line and transformers to meet the load demand. In this paper, a solar power fed BLDC motor water pumping system with boost converter and Voltage source Inverter (VSI) is presented which reduces the converter switch stress by increasing the voltage transfer gain ratio. VSI needs a huge dc link capacitor that is inherently unreliable and is one of the most expensive components of a drive.A MPPT controller is required to extract maximum power from the high penetrating renewable PV source and also proposes the Current source inverter (CSI) fed water pumping system is developed and examine with same operating conditions. A comparative analysis view in existing method of system replace the VSI with CSI. The performance of system is analyzed with speed settling times at same operating conditions. The proposed work is carried out in the MATLAB/Simulinksoftware. A comparative analysis is also presented in lucid manner


Author(s):  
A Lalithasyamala and Dr.D Ravi Kishore

In this paper, analysis of solar power fed Brushless DC motor (BLDC) motor drive with a boost converter is presented for water pumping application in irrigation system. Nowa days, the usage of renewable PV source is increasing gradually, due to the encouragement of eco-friendly energy sources by providing subsidies for the installation in the initial states. In the agricultural sector, the water pump system requires a 3-ϕ power supply, for that we need a separate transmission line and transformers to meet the load demand. In this paper, a solar power fed BLDC motor water pumping system with boost converter and Voltage source Inverter (VSI) is presented which reduces the converter switch stress by increasing the voltage transfer gain ratio. VSI needs a huge dc link capacitor that is inherently unreliable and is one of the most expensive components of a drive.A MPPT controller is required to extract maximum power from the high penetrating renewable PV source and also proposes the Current source inverter (CSI) fed water pumping system is developed and examine with same operating conditions. A comparative analysis view in existing method of system replace the VSI with CSI. The performance of system is analyzed with speed settling times at same operating conditions. The proposed work is carried out in the MATLAB/Simulinksoftware. A comparative analysis is also presented in lucid manner.


2020 ◽  
Vol 22 (4-5) ◽  
pp. 301-311
Author(s):  
Zeineb Ben Safia ◽  
Moez Allouch ◽  
Mohamed Chaabane

This paper presents a decentralized Takagi Sugeno (T-S) control scheme for a PV powered water pumping system, which is composed of a photovoltaic generator (PVG) supplying via a DC-DC boost converter, a DC-AC inverter, an Induction Motor coupled to a centrifugal pump. A T-S fuzzy controller is developed for MPPT (Maximum Power Point Tracking) to control the DC-DC boost converter, under variable solar irradiation and ambient temperature. An observer-based T-S fuzzy controller is dedicated to control the IM to guarantee the field-oriented control performances. From the optimal PV power provided in the MPP conditions, the optimal speed is calculated and delivered to control the IM, so that the proposed PV pumping system operates in optimal conditions and thus, maximizes the quantity of water pumped daily. Finally, simulation results are presented for both transient and steady state operation while taking into account all changes in climatic conditions, in order to validate the efficiency of the developed decentralized controller.


Sign in / Sign up

Export Citation Format

Share Document