On field experience results related to high-impedance faults in power distribution system

Author(s):  
V. Ziolkowski ◽  
I. N. da Silva ◽  
D. M. B. S de Souza ◽  
R. A. Flauzino
2020 ◽  
Vol 5 (8) ◽  
pp. 966-969
Author(s):  
Nseobong I. Okpura ◽  
E. N. C. Okafor ◽  
Kufre M. Udofia

Unlike low impedance faults, which involve relatively large magnitude of fault currents and are easily detected by conventional over-current protection devices, high impedance faults pose a serious challenge to protection engineers because they can remain on the system without the protective relays being able to detect them. This paper presents an improved method for detection and location of high impedance fault using ANFIS model. The study was conducted on the 33 kV Uyo-Ikot Ekpene power distribution line. The case study power distribution system was modeled using MATLAB software. HIFs were introduced at various locations along the distribution line. The data obtained from the MATLAB/Simulink simulated fault using discrete wavelet transform (DWT) were used to train the ANFIS for the location of HIF points along the distribution system as well as for prediction of the distance of the fault location to the nearest injection substation. The results show that ANFIS model gives 52.5 percentage reduction in error compared with FIS in the location of fault points on the case study power distribution system.


2019 ◽  
Vol 29 (08) ◽  
pp. 2050118
Author(s):  
N. Narasimhulu ◽  
D. V. Ashok Kumar ◽  
M. Vijaya Kumar

In this paper, a hybrid strategy is introduced for detecting and classifying the High Impedance Fault in Power Distribution System. For hybridization, Gravitational Search Algorithm is combined with Artificial Neural Network to crease the classification performance. The ANN is utilized to characterize the blame signal from the reference signal and the execution is enhanced in view of the GSA calculation. The yield of the proposed method is recognized and arranged whether it is HIF fault or no-fault. At first, the ordinary practices of the appropriation framework are assessed. After that, the deficiencies are connected and the signals are measured. At that point, these are given to the contribution of the enhanced ANN procedure, which gives the dataset to breaking down the framework exhibitions. Finally, the proposed strategy is implemented in the MATLAB/Simulink model and its execution is assessed and compared with other conventional techniques like DWT-ANFIS, DWT-RBFFN, MWT-ANFIS, and MWT-FLC based GA. From the experimental results, it shows that the proposed method achieved better performance than existing methods.


Author(s):  
Kavaskar Sekar ◽  
Nalin Kant Mohanty

<p>High impedance faults (HIFs) present a huge complexity of identification in an electric power distribution network (EPDN) due to their characteristics. Further, the growth of non-linear load adds complexity in HIF detection. One primary challenge of power system engineers is to reliably detect and discriminate HIFs from normal distribution system load and other switching transient disturbances. In this study, a novel HIF detection method is proposed based on the simulation of an accurate model of an actual EPDN study with real data. The proposed method uses current signal alone and does not require voltage signal. Wavelet transform (WT) is used for signal decomposition to extract statistical features and classification of HIF into Non-HIF (NHIF) by Neural Networks (NNs). The simulation study of the proposed method provides good, consistent and powerful protection for HIF.</p>


Author(s):  
V. Mohanbabu ◽  
◽  
Sk. Moulali ◽  
Ju Chan Na ◽  
Peng Cheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document