A Sensorless Speed Control of an Interior Permanent Magnet Synchronous Motor based on an Instantaneous Reactive Power and a fuzzy logic controller

Author(s):  
Hyoung-Seok Kang ◽  
Young-Seok Kim
2020 ◽  
Vol 8 (6) ◽  
pp. 5317-5321

Present research demonstrates an experimental work and simulation of FPGA based PMSM drives consists of PI and Fuzzy logic controller, for speed control under load, zero load and random change in load conditions. It also delineates the overall performance of a closed loop vector Permanent Magnet Synchronous Motor (PMSM) drive consisting of two loops, current for inner and speed for outer loops for better speed tracking systems. The resistive load which is connected across the armature of dc shunt motor and coupled with PMSM is varied. The resultant speed and torque are studied in details. Result showed that in case of fuzzy logic controller, the peak overshoot and settling time can be minimized. This FPGA based PMSM drives can be used for different paramount application under constant speed.


Author(s):  
M. N. Uddin ◽  
◽  
M. A. Rahman

This paper presents the on-line implementation of a novel fuzzy logic based speed controller for an interior permanent magnet synchronous motor drive. The fundamentals of fuzzy logic algorithms relating to motor control applications are illustrated. A new fuzzy speed controller for the IPMSM drive is designed. The complete vector control scheme incorporating the fuzzy logic controller (FLC) is successfully implemented in real-time using a digital signal processor board DS 1102 in a laboratory 1 hp interior permanent magnet synchronous motor (IPMSM). The efficacy of the proposed fuzzy logic controller (FLC) based IPMSM drive is verified by simulation as well as experimental results at different dynamic operating conditions. The fuzzy logic controller is found to be more robust for application in the IPMSM drive.


Sign in / Sign up

Export Citation Format

Share Document