Research on Bearing Cross-domain Fault Diagnosis Based on Invariant Subspace Learning with Tensor Alignment

Author(s):  
Jiawei Gu ◽  
Zexi Luo ◽  
Jinglin Wang ◽  
Yong Shen
Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3382
Author(s):  
Zhongwei Zhang ◽  
Mingyu Shao ◽  
Liping Wang ◽  
Sujuan Shao ◽  
Chicheng Ma

As the key component to transmit power and torque, the fault diagnosis of rotating machinery is crucial to guarantee the reliable operation of mechanical equipment. Regrettably, sample class imbalance is a common phenomenon in industrial applications, which causes large cross-domain distribution discrepancies for domain adaptation (DA) and results in performance degradation for most of the existing mechanical fault diagnosis approaches. To address this issue, a novel DA approach that simultaneously reduces the cross-domain distribution difference and the geometric difference is proposed, which is defined as MRMI. This work contains three parts to improve the sample class imbalance issue: (1) A novel distance metric method (MVD) is proposed and applied to improve the performance of marginal distribution adaptation. (2) Manifold regularization is combined with instance reweighting to simultaneously explore the intrinsic manifold structure and remove irrelevant source-domain samples adaptively. (3) The ℓ2-norm regularization is applied as the data preprocessing tool to improve the model generalization performance. The gear and rolling bearing datasets with class imbalanced samples are applied to validate the reliability of MRMI. According to the fault diagnosis results, MRMI can significantly outperform competitive approaches under the condition of sample class imbalance.


2021 ◽  
pp. 107646
Author(s):  
Yong Feng ◽  
Jinglong Chen ◽  
Jingsong Xie ◽  
Tianci Zhang ◽  
Haixin Lv ◽  
...  

Author(s):  
Olga Mendoza-Schrock ◽  
Mateen M. Rizki ◽  
Vincent J. Velten

This article describes how transfer subspace learning has recently gained popularity for its ability to perform cross-dataset and cross-domain object recognition. The ability to leverage existing data without the need for additional data collections is attractive for monitoring and surveillance technology, specifically for aided target recognition applications. Transfer subspace learning enables the incorporation of sparse and dynamically collected data into existing systems that utilize large databases. Manifold learning has also gained popularity for its success at dimensionality reduction. In this contribution, Manifold learning and transfer subspace learning are combined to create a new system capable of achieving high target recognition rates. The manifold learning technique used in this contribution is diffusion maps, a nonlinear dimensionality reduction technique based on a heat diffusion analogy. The transfer subspace learning technique used is Transfer Fisher's Linear Discriminative Analysis. The new system, manifold transfer subspace learning, sequentially integrates manifold learning and transfer subspace learning. In this article, the ability of the new techniques to achieve high target recognition rates for cross-dataset and cross-domain applications is illustrated using a variety of diverse datasets.


Sign in / Sign up

Export Citation Format

Share Document