The Dual-band Dipole-like Arrangement for Digital Printed Antenna Arrays

Author(s):  
Sergey A. Alekseytsev
Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3184
Author(s):  
Jing Li ◽  
Yonggang He ◽  
Han Ye ◽  
Tiesheng Wu ◽  
Yumin Liu ◽  
...  

Metasurface-based beam splitters attracted huge interest for their superior properties compared with conventional ones made of bulk materials. The previously reported designs adopted discrete metasurfaces with the limitation of a discontinuous phase profile. In this paper, we propose a dual-band beam splitter, based on an anisotropic quasi-continuous metasurface, by exploring the optical responses under x-polarized (with an electric field parallel to the direction of the phase gradient) and y-polarized incidences. The adopted metasurface consists of two identical trapezoidal silicon antenna arrays with opposite spatial variations that lead to opposite phase gradients. The operational window of the proposed beam splitter falls in the infrared and visible region, respectively, for x- and y-polarized light, resulting from the different mechanisms. When x-polarized light is incident, the conversion efficiency and total transmission of the beam splitter remains higher than 90% and 0.74 within the wavelength range from 969 nm to 1054 nm, respectively. In this condition, each array can act as a beam splitter of unequal power. For y-polarized incidence, the maximum conversion efficiency and transmission reach approximately 100% and 0.85, while the values remain higher than 90% and 0.65 in the wavelength range from 687 nm to 710 nm, respectively. In this case, each array can be viewed as an effective beam deflector. We anticipate that it can play a key role in future integrated optical devices.


Author(s):  
Ruchi ◽  
Amalendu Patnaik ◽  
M. V. Kartikeyan

Abstract Designing miniaturized multiband antennas to cover both the 5G new radio frequencies (FR1 and FR2) simultaneously is a challenge for wireless communication researchers. This paper presents two antenna designs : a dual-band printed antenna of size 18 × 16 × 0.285 mm3 operating at FR1–5.8 GHz and FR2–28 GHz and a triple-band printed antenna with dimensions 30 × 25 × 0.543 mm3 operating at FR1–3.5 GHz and 5.8 GHz (sub-6 GHz microwave frequency bands) and FR2–28 GHz (mm-wave frequency band). The final projected triple-band antenna has a compact size with an impedance bandwidth of 12.71%, 11.32%, and 18.3% at 3.5 GHz, 5.8 GHz, and 28 GHz, respectively with the corresponding gain of 1.86 dB, 2.55 dB, and 4.41 dB. The measured radiation characteristics of the fabricated prototypes show that the proposed designs are suitable for trendy 5G-RFID and mobile Internet of things (IoT) applications.


2016 ◽  
Vol 64 (4) ◽  
pp. 1287-1297 ◽  
Author(s):  
Krzysztof Wincza ◽  
Kamil Staszek ◽  
Izabela Slomian ◽  
Slawomir Gruszczynski

2021 ◽  
Author(s):  
Jinkai Li ◽  
Xiaoxi Zhang ◽  
Yaoxu Lei ◽  
Huiqing Zhai ◽  
Changyuan Liu

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 222486-222495
Author(s):  
Hai-Han Sun ◽  
Bevan Jones ◽  
Y. Jay Guo ◽  
Yee Hui Lee

2020 ◽  
Vol 12 (7) ◽  
pp. 1208 ◽  
Author(s):  
Joan Francesc Munoz-Martin ◽  
Raul Onrubia ◽  
Daniel Pascual ◽  
Hyuk Park ◽  
Adriano Camps ◽  
...  

As opposed to monostatic radars where incoherent backscattering dominates, in bistatic radars, such as Global Navigation Satellite Systems Reflectometry (GNSS-R), the forward scattered signals exhibit both an incoherent and a coherent component. Current models assume that either one or the other are dominant, and the calibration and geophysical parameter retrieval (e.g., wind speed, soil moisture, etc.) are developed accordingly. Even the presence of the coherent component of a GNSS reflected signal itself has been a matter of discussion in the last years. In this work, a method developed to separate the leakage of the direct signal in the reflected one is applied to a data set of GNSS-R signals collected over the ocean by the Microwave Interferometer Reflectometer (MIR) instrument, an airborne dual-band (L1/E1 and L5/E5a), multi-constellation (GPS and Galileo) GNSS-R instrument with two 19-elements antenna arrays with 4 beam-steered each. The presented results demonstrate the feasibility of the proposed technique to untangle the coherent and incoherent components from the total power waveform in GNSS reflected signals. This technique allows the processing of these components separately, which increases the calibration accuracy (as today both are mixed and processed together), allowing higher resolution applications since the spatial resolution of the coherent component is determined by the size of the first Fresnel zone (300–500 meters from a LEO satellite), and not by the size of the glistening zone (25 km from a LEO satellite). The identification of the coherent component enhances also the location of the specular reflection point by determining the peak maximum from this coherent component rather than the point of maximum derivative of the incoherent one, which is normally noisy and it is blurred by all the glistening zone contributions.


2013 ◽  
Vol 142 ◽  
pp. 107-121 ◽  
Author(s):  
Diego Caratelli ◽  
Maria Carolina Vigano ◽  
Giovanni Toso ◽  
Piero Angeletti ◽  
Alexander A. Shibelgut ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document