Remote Sensing of Coastal Water-quality Parameters from Sentinel-2 Satellite Data in the Tyrrhenian and Adriatic Seas

Author(s):  
Michele Iacobolli ◽  
Massimo Orlandi ◽  
Domenico Cimini ◽  
Frank S. Marzano
2020 ◽  
Author(s):  
Dainis Jakovels ◽  
Agris Brauns ◽  
Jevgenijs Filipovs ◽  
Tuuli Soomets

<p>Lakes and water reservoirs are important ecosystems providing such services as drinking water, recreation, support for biodiversity as well as regulation of carbon cycling and climate. There are about 117 million lakes worldwide and a high need for regular monitoring of their water quality. European Union Water Framework Directive (WFD) stipulates that member states shall establish a programme for monitoring the ecological status of all water bodies larger than 50 ha, in order to ensure future quality and quantity of inland waters. But only a fraction of lakes is included in in-situ monitoring networks due to limited resources. In Latvia, there are 2256 lakes larger than 1 ha covering 1.5% of Latvian territory, and approximately 300 lakes are larger than 50 ha, but only 180 are included in Inland water monitoring program, in addition, most of them are monitored once in three to six years. Besides, local municipalities are responsible for the management of lakes, and they are also interested in the assessment of ecological status and regular monitoring of these valuable assets. </p><p>Satellite data is a feasible way to monitor lakes over a large region with reasonable frequency and support the WFD status assessment process. There are several satellite-based sensors (eg. MERIS, MODIS, OLCI) available specially designed for monitoring of water quality parameters, however, they are limited only to use for large water bodies due to a coarse spatial resolution (250...1000 m/pix). Sentinel-2 MSI is a space-borne instrument providing 10...20 m/pix multispectral data on a regular basis (every 5 days at the equator and 2..3 days in Latvia), thus making it attractive for monitoring of inland water bodies, especially the small ones (<1 km<sup>2</sup>). </p><p>Development of Sentinel-2 satellite data-based service (SentiLake) for monitoring of Latvian lakes is being implemented within the ESA PECS for Latvia program. The pilot territory covers two regions in Latvia and includes more than 100 lakes larger than 50 ha. Automated workflow for selecting and processing of available Sentinel-2 data scenes for extracting of water quality parameters (chlorophyll-a and TSM concentrations) for each target water body has been developed. Latvia is a northern country with a frequently cloudy sky, therefore, optical remote sensing is challenging in or region. However, our results show that 1...4 low cloud cover Sentinel-2 data acquisitions per month could be expected due to high revisit frequency of Sentinel-2 satellites. Combination of C2X and C2RCC processors was chosen for the assessment of chl-a concentration showing the satisfactory performance - R<sup>2</sup> = 0,82 and RMSE = 21,2 µg/l. Chl-a assessment result is further converted and presented as a lake quality class. It is expected that SentiLake will provide supplementary data to limited in situ data for filling gaps and retrospective studies, as well as a visual tool for communication with the target audience.</p>


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 556 ◽  
Author(s):  
Mohamed Elhag ◽  
Ioannis Gitas ◽  
Anas Othman ◽  
Jarbou Bahrawi ◽  
Petros Gikas

Remote sensing applications in water resources management are quite essential in watershed characterization, particularly when mega basins are under investigation. Water quality parameters help in decision making regarding the further use of water based on its quality. Water quality parameters of chlorophyll a concentration, nitrate concentration, and water turbidity were used in the current study to estimate the water quality parameters in the dam lake of Wadi Baysh, Saudi Arabia. Water quality parameters were collected daily over 2 years (2017–2018) from the water treatment station located within the dam vicinity and were correspondingly tested against remotely sensed water quality parameters. Remote sensing data were collected from Sentinel-2 sensor, European Space Agency (ESA) on a satellite temporal resolution basis. Data were pre-processed then processed to estimate the maximum chlorophyll index (MCI), green normalized difference vegetation index (GNDVI) and normalized difference turbidity index (NDTI). Zonal statistics were used to improve the regression analysis between the spatial data estimated from the remote sensing images and the nonspatial data collected from the water treatment plant. Results showed different correlation coefficients between the ground truth collected data and the corresponding indices conducted from remote sensing data. Actual chlorophyll a concentration showed high correlation with estimated MCI mean values with an R2 of 0.96, actual nitrate concentration showed high correlation with the estimated GNDVI mean values with an R2 of 0.94, and the actual water turbidity measurements showed high correlation with the estimated NDTI mean values with an R2 of 0.94. The research findings support the use of remote sensing data of Sentinel-2 to estimate water quality parameters in arid environments.


2021 ◽  
Author(s):  
Long Vu Huu ◽  
Andreas Schenk ◽  
Stefan Hinz

<p>The multispectral mission of Sentinel-2 enables reliable, affordable and continuous environmental monitoring systems in fields like agriculture, biodiversity, environmental hazards and surface water. Several studies have proven that main water quality parameters like total suspended solids (TSS) and chlorophyll (Chl-a) can be estimated from multispectral data using different methods and algorithms. However, independently of the specific approach, these algorithms are selected and optimized to work primarily for one of the main water types i.e. open water, coastal water or inland water. This is also shown by the fact that there is not a single universal algorithm, which can be applied to all water types with consistent and reliable performance at the same time.</p><p>Ca Mau peninsula is a spacious area located in the southern part of the Mekong Delta, with an area of around 1.6 million hectares. This area has high growth rates of agricultural and aquaculture production, hence diverse water demands and water use types. In this study we use Sentinel-2 remote sensing data to monitor surface water quality using adaptive ML models to account for the different surface water types which occur in this area. Through using remote sensing data, we can provide a synoptic and sufficient view in spatial aspects about water quality parameters in the Ca Mau peninsula. Adapting the ML model will address the bio-optical model for a mixed water scenario.</p><p>The study is based on Sentinel-2 satellite images acquired in 2019 and 2020, supplemented by field data, i.e. hyperspectral measurements using close range observations, in-situ measurements and water samples, with the aim to collect a comprehensive reference data set as biophysical parameters are closely connected with spectral parameters at close range as well as at high spectral resolution. Therefore, surface hyperspectral measurement has been used to simulate Sentinel 2 multispectral image data at the respective bands.</p><p>We automatically assign the water type classes to observed surface water by integrating GIS data and remote sensing as the pre-processing step. For each class, the ML models are trained based on the experimental measurements with the multispectral and the simulated multispectral images on the respective water types. We devote special attention to water type boundaries to provide a smooth transition of estimated parameters.</p><p>The outputs of this model are surface water quality distribution maps with turbidity, TSS, and Chl-a parameters for all areas in Ca Mau peninsula, independent of the actual water type. Through the acceptable accuracy of model testing, the consolidation model will contribute water quality parameters that are crucial and meaningful to the planning and use of water for domestic use and production, besides, it also supports the decision-making of sustainable water use.</p>


2021 ◽  
Vol 13 (5) ◽  
pp. 1043
Author(s):  
Giulia Sent ◽  
Beatriz Biguino ◽  
Luciane Favareto ◽  
Joana Cruz ◽  
Carolina Sá ◽  
...  

Monitoring water quality parameters and their ecological effects in transitional waters is usually performed through in situ sampling programs. These are expensive and time-consuming, and often do not represent the total area of interest. Remote sensing techniques offer enormous advantages by providing cost-effective systematic observations of a large water system. This study evaluates the potential of water quality monitoring using Sentinel-2 observations for the period 2018–2020 for the Sado estuary (Portugal), through an algorithm intercomparison exercise and time-series analysis of different water quality parameters (i.e., colored dissolved organic matter (CDOM), chlorophyll-a (Chl-a), suspended particulate matter (SPM), and turbidity). Results suggest that Sentinel-2 is useful for monitoring these parameters in a highly dynamic system, however, with challenges in retrieving accurate data for some of the variables, such as Chl-a. Spatio-temporal variability results were consistent with historical data, presenting the highest values of CDOM, Chl-a, SPM and turbidity during Spring and Summer. This work is the first study providing annual and seasonal coverage with high spatial resolution (10 m) for the Sado estuary, being a key contribution for the definition of effective monitoring programs. Moreover, the potential of remote sensing methodologies for continuous water quality monitoring in transitional systems under the scope of the European Water Framework Directive is briefly discussed.


2020 ◽  
Vol 42 ◽  
pp. e32
Author(s):  
George Colares Silva Filho ◽  
Juliana Martins dos Santos ◽  
Paulo Cesar Mendes Villis ◽  
Ingrid Santos Gonçalves ◽  
Isael Coelho Correia ◽  
...  

Natural or anthropogenic chemical compounds of different origins often accumulate in estuarine regions. These compounds may alter the water quality. Therefore, It is important to constantly monitor the quality of estuarine regions. A combination of remote sensing and traditional sampling can lead to a better monitoring program for water quality parameters. The objective of this work is to assess the spatiotemporal variability of the physicochemical properties of water in the lower region of the Mearim River and estimate water quality parameters via remote sensing. Samples were collected at 16 points, from Baixo Arari to the mouth of the watershed, using a multiparameter meter and Landsat 8 satellite images. The physicochemical parameters of the water had high salinity levels, between 2.30 and 20.10 parts per trillion; a high total dissolved solids content, between 2.77 and 19.70 g/L; and minimum dissolved oxygen values. Estimating the physicochemical properties of the water via remote sensing proved feasible, particularly in the dry season when there is less cloud cover.


Sign in / Sign up

Export Citation Format

Share Document