Computing unambiguous TEC and ionospheric delays using only carrier phase data from NOAA's CORS network

Author(s):  
D.A. Smith
Keyword(s):  
Author(s):  
Jacek Rapinski ◽  
Slawomir Cellmer ◽  
Joanna Janicka

This paper presents ZigBee module that is used for ranging in indoor positioning. The system is using the phase shift measurements to determine the distances between user and anchors. The nature of phase shift measurements is causing the results to be in the range of a single wave length. Thus, as in GNSS measurements, appears the problem with ambiguity resolution. In satellite positioning this issue is well described but in range-based ZigBee positioning this problem needs to be solved. The standard procedure to find the correct values of ambiguities is to search for a combination of observation equations with smallest RMS. The authors propose a different solution – the Modified Ambiguity Function Approach (MAFA). It is a method of GNSS carrier phase data processing. In this method, the integer nature of ambiguities is taken into account in the functional model of the adjustment.


2004 ◽  
Vol 78 (3) ◽  
pp. 192-200 ◽  
Author(s):  
C. -D. Zhang ◽  
X. -P. Wu ◽  
J. -M. Hao ◽  
H. -B. He ◽  
D. -M. Zhao

2004 ◽  
Vol 78 (4-5) ◽  
pp. 263-271
Author(s):  
C.-D. Zhang ◽  
X.-P. Wu ◽  
J.-M. Hao ◽  
H.-B. He ◽  
D.-M. Zhao

2020 ◽  
Author(s):  
Jianghui Geng ◽  
Guangcai Li

High-precision navigation using low-cost handsets has profound potential for mass-market applications, which has been being boosted by the release of raw GNSS data from Google Android smart devices. However, integer ambiguity fixing for centimeter-level GNSS positioning is prevented by the unaligned chipset initial phase biases (IPBs) found within Android carrier-phase data. In this study, we thus investigate the temporal behaviors of those chipset IPBs using zero baselines where smart devices are linked to external survey-grade antennas, and find that the IPBs are generally stable over time as the mean standard deviation of single-epoch IPB estimates derived from continuous carrier-phase data is as low as 0.04 cycles for all satellites. Unfortunately, these chipset IPBs differ randomly among satellites and change unpredictably if carrier-phase signals are re-tracked, discouragingly suggesting that the chipset IPBs cannot be pre-calibrated or even calibrated on the fly. We therefore have to presumably correct for them in a post-processing manner with the goal of inspecting the potential of Android GNSS ambiguity resolution if hopefully the IPBs can be gone. For a vehicle-borne Nexus 9 tablet with respect to a survey-grade receiver located 100-2000 m away, we achieve the first ambiguity-fixed solution within 321 s and finally 51.6% of all epochs are resolved; the ambiguity-fixed epochs can achieve a positioning accuracy of 1.4, 2.2 and 3.6 cm for the east, north and up components, respectively, showing an improvement of 30%-80% compared to the ambiguity-float solutions. While all smart devices above are connected to external survey-grade antennas, we find that a Xiaomi 8 smartphone can be coupled effectively with a miniaturized portable patch antenna, and then achieve commensurate carrier-phase tracking and ambiguity-fixing performance to those of a commercial μ-blox receiver with its dedicated patch antenna. This is encouraging since a compact and inexpensive patch antenna paired with smart devices can promote the democratization of high-precision GNSS.


2021 ◽  
Author(s):  
Carolyn Roesler ◽  
Jade Morton ◽  
Margaret Scott ◽  
R. Steven Nerem

2021 ◽  
Vol 13 (24) ◽  
pp. 5017
Author(s):  
Vladislav Demyanov ◽  
Ekaterina Danilchuk ◽  
Yury Yasyukevich ◽  
Maria Sergeeva

The term deviation frequency (fd) denotes the boundary between the variable part of the amplitude and phase scintillation spectrum and the part of uninformative noises. We suggested the concept of the “characteristic deviation frequency” during the observation period. The characteristic deviation frequency is defined as the most probable value of the deviation frequency under current local conditions. Our case study involved GPS, GLONASS, Galileo and SBAS data under quiet and weakly disturbed geomagnetic conditions (geomagnetic storm on 16 April 2021, Kpmax = 5, SYM-Hmin = −57 nT) at the mid-latitude GNSS station. Our results demonstrated that the deviation frequency for all signal components of GPS, GLONASS and Galileo varies within 15–22 Hz. The characteristic deviation frequency was 20 Hz for the mentioned GNSS signals. The SBAS differs from other systems: deviation frequency varies within 13–20 Hz. The characteristic deviation frequency is lower and equal to 18 Hz. We suggest the characteristic deviation frequency to determine the optimal sampling rate of the GNSS carrier phase data for the ionospheric studies. In turn, the deviation frequency can be considered as a promising index to estimate the boundary of non-variability of the ionosphere.


Sign in / Sign up

Export Citation Format

Share Document