Ambiguity Resolution in ZigBee Phase Shift Measurements Using MAFA Method

Author(s):  
Jacek Rapinski ◽  
Slawomir Cellmer ◽  
Joanna Janicka

This paper presents ZigBee module that is used for ranging in indoor positioning. The system is using the phase shift measurements to determine the distances between user and anchors. The nature of phase shift measurements is causing the results to be in the range of a single wave length. Thus, as in GNSS measurements, appears the problem with ambiguity resolution. In satellite positioning this issue is well described but in range-based ZigBee positioning this problem needs to be solved. The standard procedure to find the correct values of ambiguities is to search for a combination of observation equations with smallest RMS. The authors propose a different solution – the Modified Ambiguity Function Approach (MAFA). It is a method of GNSS carrier phase data processing. In this method, the integer nature of ambiguities is taken into account in the functional model of the adjustment.

2021 ◽  
Author(s):  
huseyin ozgur kazanci

Abstract Diffuse optic imaging is an important biomedical optic research tool. Diffuse optic tomography (DOT) modality needs progressive philosophical approaches for scientific contribution. Technological developments and philosophical approaches should both go forward. Phase-shift based frequency domain (FD) diffuse optical tomography (FDDOT) method was well established in the literature. The instruments were tested for brain neurofunctional imaging. A mixture of AC laser intensity and phase data were used at these works. According to those works; deep volume resolution was improved by only using phase data. Because phase data is only related to the photon mean free path in imaging tissue media. Besides this advantage, laser intensity data is also affected by noisy background light and electrical artifacts. Another most important advantage of only using phase data can be explained as time-resolved temporal change can be directly related to phase shift of modulated frequency source. At this work, the frequency domain (FD) DOT imaging method which uses phase shift data were used for simulation phantom. Laser source-driven forward model problem weight matrix simulation data was given to the simple pseudo-inverse-based inverse problem solution algorithm for one inclusion example. The inclusion image was reconstructed and demonstrated successfully. Forward model problem weight functions inside the tissue simulation media were calculated and used based on the phase shifts at the same core modulation frequency. 100 MHz modulation frequency was selected due to its FDDOT standard. 13 sources and 13 detectors were placed on the back-reflected imaging surface. 40 x, y, z cartesian coordinate grid elements were used in the image reconstruction algorithm. Photon absorption coefficient: ma = 0.1 cm-1, and scattering coefficient: ms = 100 cm-1 values were set for background simulation phantom. One inclusion object was embedded inside the imaging tissue simulation phantom background. x, y, z cartesian coordinate grid sizes were selected for 100 mm for each direction. Photon phase shift fluencies were added to the forward model problem. The forward model problem was built according to the frequency domain photon migration diffusion approximation. Forward model problem photon fluencies were calculated according to the diffusion equation approximation. The simple pseudoinverse mathematical inverse problem solution algorithm was applied to test the results. The embedded inclusion object was reconstructed successfully with the high-resolution image quality. In general, DOT techniques suffer for the low image quality, but in this work, the high-quality image was reconstructed and demonstrated. The philosophical approach has future promising DOT imaging capability. The phase shift version of the FDDOT modality has an important advantage for future purpose.


2021 ◽  
Author(s):  
Konstantinos Chasapis ◽  
Eugeny Buldakov ◽  
Helen Czerski

<p>The bubbles generated by breaking waves in the open ocean are an important feature of the ocean surface. They affect optical and acoustical properties of the top few meters of the ocean, influence surfactant scavenging, aerosol production and air-sea gas transfer. Short-lived larger bubbles which re-surface and burst dominate the transfer of less soluble gases such as carbon dioxide. A single wave crest approaching breaking deforms rapidly and in a storm sea the most common breaker is the spilling type. Detailed observations in space and time connecting the shape of the spilling breaker to subsequent bubble populations are limited, and the effect on the bubble penetration depth and residence time underwater is particularly important. In this study, we carried out a series of experiments to track the formation and evolution of large bubbles for different local crest geometries.</p><p>A breaking wave in a wave flume was generated with dispersive focusing of a wave group. The group has a pre-defined amplitude spectrum. Running experiments with different phase shifts of the same amplitude spectrum showed that when a peak-focussed wave (zero phase shift) breaks, then wave groups with other added phase shifts break as well. To investigate possible differences in the deformation of those breakers a laser imaging technique was used. An algorithm identified the 2D shape of the breaker in successive images. It also separated the crests from bulges based on geometric criteria. We showed that, despite wave groups having same spectra, the extracted bulges differed locally in shape, volume and velocity for each phase shift at the location of breaking. Therefore, breakers ranging from the more traditional spilling type, which has a bulge that collapses on the front face of the wave, to the micro-plunging type, which has a pronounced overturning tip, were observed depending on the phase shift. </p><p>The evolution of bubbles for each phase shifted bulge was captured by a high speed camera and measured by a feature extraction algorithm. We generally found that spilling bulges created fewer bubbles in total than micro-plungers. They also created fewer larger bubbles, i.e. with radius r>1 mm, at all measured flume areas. In contrast, micro-plungers that trap air within a small cavity as they break had less steep size distributions for r>1 mm. The maximum volume of air per radius showed a gradual shift from r>1 mm to r=1 mm moving away from the breaking location for all breakers. It is interesting, finally, that the maximum volume per radius did not shift to smaller radii as time passes. This is an indication that the largest bubbles, i.e. r>4 mm, rise to the surface and burst instead of splitting into smaller ones, irrespectively of the local breaker properties. </p>


Sign in / Sign up

Export Citation Format

Share Document