Measurement of surface roughness effects on conductivity in the terahertz regime with a high-Q quasi optical resonator

Author(s):  
Benjamin B. Yang ◽  
John H. Booske
2016 ◽  
Vol 99 ◽  
pp. 305-311 ◽  
Author(s):  
Ilenia Farina ◽  
Francesco Fabbrocino ◽  
Francesco Colangelo ◽  
Luciano Feo ◽  
Fernando Fraternali

2013 ◽  
Vol 20 (12) ◽  
pp. 2261-2269 ◽  
Author(s):  
Gaurav Pendharkar ◽  
Raghavendra Deshmukh ◽  
Rajendra Patrikar

1969 ◽  
Vol 6 (8) ◽  
pp. 955-957 ◽  
Author(s):  
R. G. HERING ◽  
T. F. SMITH

1999 ◽  
Vol 27 (5) ◽  
pp. 450-460 ◽  
Author(s):  
P.-Å. Krogstadt ◽  
R.A. Antonia

1980 ◽  
Vol 102 (3) ◽  
pp. 360-366 ◽  
Author(s):  
J. L. Teale ◽  
A. O. Lebeck

The average flow model presented by Patir and Cheng [1] is evaluated. First, it is shown that the choice of grid used in the average flow model influences the results. The results presented are different from those given by Patir and Cheng. Second, it is shown that the introduction of two-dimensional flow greatly reduces the effect of roughness on flow. Results based on one-dimensional flow cannot be relied upon for two-dimensional problems. Finally, some average flow factors are given for truncated rough surfaces. These can be applied to partially worn surfaces. The most important conclusion reached is that an even closer examination of the average flow concept is needed before the results can be applied with confidence to lubrication problems.


Sign in / Sign up

Export Citation Format

Share Document