The power system multi-objective optimization dispatching containing virtual power plant

Author(s):  
Huaxin Cheng ◽  
Yajing Gao ◽  
Jing Zhang ◽  
Ruihuan Li ◽  
Haifeng Liang
2021 ◽  
Vol 20 ◽  
pp. 75-91
Author(s):  
Qing Yang ◽  
Hao Wang ◽  
Taotao Wang ◽  
Shengli Zhang ◽  
Xiaoxiao Wu ◽  
...  

The advent of distributed energy resources (DERs), such as distributed renewables, energy storage, electric vehicles, and controllable loads, brings a significantly disruptive and transformational impact on the centralized power system. It is widely accepted that a paradigm shift to a decentralized power system with bidirectional power flow is necessary to the integration of DERs. The virtual power plant (VPP) emerges as a promising paradigm for managing DERs to participate in the power system. In this paper, we develop a blockchain-based VPP energy management platform to facilitate a rich set of transactive energy activities among residential users with renewables, energy storage, and flexible loads in a VPP. Specifically, users can interact with each other to trade energy for mutual benefits and provide network services, such as feed-in energy, reserve, and demand response, through the VPP. To respect the users’ independence and preserve their privacy, we design a decentralized optimization algorithm to optimize the users’ energy scheduling, energy trading, and network services. Then we develop a prototype blockchain network for VPP energy management and implement the proposed algorithm on the blockchain network. By experiments using real-world data trace, we validated the feasibility and e_ectiveness of our algorithm and the blockchain system. The simulation results demonstrate that our blockchain-based VPP energy management platform reduces the users’ cost by up to 38.6% and reduces the overall system cost by 11.2%.


Energy ◽  
2019 ◽  
Vol 172 ◽  
pp. 630-646 ◽  
Author(s):  
Shahrzad Hadayeghparast ◽  
Alireza SoltaniNejad Farsangi ◽  
Heidarali Shayanfar

2018 ◽  
Vol 8 (9) ◽  
pp. 1484 ◽  
Author(s):  
Jie Duan ◽  
Xiaodan Wang ◽  
Yajing Gao ◽  
Yongchun Yang ◽  
Wenhai Yang ◽  
...  

Virtual power plant (VPP) is an effective technology form to aggregate the distributed energy resources (DERs), which include distributed generation (DG), energy storage (ES) and demand response (DR). The establishment of a unified and coordinated control of VPP is an important means to achieve the interconnection of energy internet. Therefore, this paper focuses on the research of VPP construction model. Firstly, a preliminary introduction on all kinds of the DERs is carried out. According to the relevant guidelines, the decision area of the VPP is carefully divided, and the decision variables representing the various resources in the area are determined. Then, in order to get a VPP with low daily average cost, good load characteristics, high degree of DG consumption and high degree of resource aggregation, a multi-objective VPP construction model based on decision area division is established, and various constraints including geographic information are considered. The improved bat algorithm based on priority selection is used to solve this model. Finally, the correctness and effectiveness of the model are verified by an example.


2021 ◽  
Vol 11 (3) ◽  
pp. 1282
Author(s):  
Qingwen Xu ◽  
Yongji Cao ◽  
Hengxu Zhang ◽  
Wen Zhang ◽  
Vladimir Terzija

Non-synchronous renewable energy sources (RESs) have strong volatility and low inertia, which brings about great challenges on the accommodation of RESs and the security and stability of power systems. This paper proposes a bi-level power system dispatch and control architecture based on the grid-friendly virtual power plant (GVPP), so as to accommodate RESs flexibly and securely. The typical dispatch and control system of the power system in China is presented, and the particular challenges stemming from non-synchronous RESs are analyzed. The functional requirements, concept, and fundamental design of the GVPP are provided, which is distinguished from traditional virtual power plants (VPPs) for its active participation in power system stability control. Based on the cloud platform, a bi-level dispatch and control architecture considering two objectives is established. First, in the inner level, the GVPP operates to promote the accommodation of RESs under normal condition. Then, from the perspective of out-level power systems, GVPPs serve as spinning reserves for power support under contingencies. Besides, the key problems to be solved in the development of the GVPP-based architecture are summarized. Although the architecture is proposed for the power system in China, it can be applied to any power systems with similar challenges.


Sign in / Sign up

Export Citation Format

Share Document