A Rotational Electromagnetic Energy Harvester for The Ultra-low Frequency Vibration

Author(s):  
Xinyu Ma ◽  
Xingyu Tang ◽  
Ziyue Zhang ◽  
Anxin Luo ◽  
Fei Wang
2014 ◽  
Vol 918 ◽  
pp. 106-114 ◽  
Author(s):  
Min Chie Chiu ◽  
Ying Chun Chang ◽  
Long Jyi Yeh ◽  
Chiu Hung Chung ◽  
Chen Hsin Chu

The goal of this paper is to develop and experimentally test portable vibration-based electromagnetic energy harvesters which are fit for extracting low frequency kinetic energy. Based on a previous study on fixed vibration-based electromagnetic energy harvesters, three kinds of portable energy harvesters (prototype I, prototype II, and prototype III) are developed and tested. To obtain the related parameters of the energy harvesters, an experimental platform used to measure the vibrational systems electrical power at the resonant frequency and other fixed frequencies is also established. Based on the research work of vibration theory, a low frequency vibration-arm mechanism (prototype III) which is easily in resonance with a walking tempo is developed. Here, a strong magnet fixed to one side of the vibration-arm along with a set of wires placed along the vibrating path will generate electricity. The circular device has a radius of 180 mm, a width of 50 mm, and weighs 200 grams. Because of its light mass, it is easy to carry and put into a backpack. Experimental results reveal that the energy harvester (prototype III) can easily transform kinetic energy into electrical power via the vibration-based electromagnetic system when walking at a normal speed. Consequently, electrical energy reaching 0.25 W is generated from the energy harvester (prototype III) by extracting kinetic energy produced by walking.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 391
Author(s):  
Nan Wu ◽  
Yuncheng He ◽  
Jiyang Fu ◽  
Peng Liao

In this paper a novel hybrid piezoelectric and electromagnetic energy harvester for civil engineering low-frequency sloshing environment is reported. The architecture, fabrication and characterization of the harvester are discussed. The hybrid energy harvester is composed of a permanent magnet, copper coil, and PVDF(polyvinylidene difluoride) piezoelectric film, and the upper U-tube device containing a cylindrical fluid barrier is connected to the foundation support plate by a hinge and spring. The two primary means of energy collection were through the vortex street, which alternately impacted the PVDF piezoelectric film through fluid shedding, and the electromotive force (EMF) induced by changes in the magnetic field position in the conducting coil. Experimentally, the maximum output power of the piezoelectric transformer of the hybrid energy harvester was 2.47 μW (circuit load 270 kΩ; liquid level height 80 mm); and the maximum output power of the electromagnetic generator was 2.72 μW (circuit load 470 kΩ; liquid level height 60 mm). The low-frequency sloshing energy collected by this energy harvester can drive microsensors for civil engineering monitoring.


2013 ◽  
Vol 475-476 ◽  
pp. 1624-1628
Author(s):  
Hasnizah Aris ◽  
David Fitrio ◽  
Jack Singh

The development and utilization of different structural materials, optimization of the cantilever geometry and power harvesting circuit are the most commonly methods used to increase the power density of MEMS energy harvester. This paper discusses the cantilever geometry optimization process of low power and low frequency of bimorph MEMS energy harvester. Three piezoelectric materials, ZnO, AlN and PZT are deposited on top and bottom of the cantilever Si substrate. This study focuses on the optimization of the cantilevers length, width, substrate thickness and PZe thickness in order to achieve lower than 600 Hz of resonant frequency. The harvested power for this work is in the range of 0.02 ~ 194.49 nW.


Sign in / Sign up

Export Citation Format

Share Document