vibration excitation
Recently Published Documents


TOTAL DOCUMENTS

182
(FIVE YEARS 37)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Qichao Ren ◽  
Ziming Kou ◽  
Juan Wu ◽  
Tengyu Li ◽  
Waled Yahya

The improvement of the energy utilization rate of a hydraulic vibration-excitation system is critical to the research and development of hydraulic vibration equipment. In this paper, a hydraulic vibration-excitation system controlled by a new type of shock rotary vibrator is proposed. A system model considering the pipeline effect was established for the hydraulic shock phenomenon. In addition, the model was compared with the one that does not consider the pipeline effect. The effectiveness of the proposed model was verified experimentally. Finally, the shock phenomenon during the process of switching the working state of the vibrator and the influence of certain important parameters of the system on the vibration output were investigated based on the proposed model. The results showed that (1) the hydraulic shock phenomenon occurred when the working state of the hydraulic vibrator was switched and (2) the hydraulic shock wave could effectively improve the excitation force of the system. The excitation force increased with an increase in the oil supply pressure, spindle speed, and load. However, it was negatively correlated with the spring stiffness. The amplitude of the vibration waveform output was positively correlated with the oil supply pressure and negatively correlated with the spindle speed and load. The amplitude first increased and then decreased as the stiffness of the vibration spring increased. The only influence of the precompressed length of the spring on the system output was its alteration of the vibration center of the system output vibration.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012045
Author(s):  
Yanzhong Wang ◽  
E Shiyuan

Abstract Rolling bearings are widely used in aviation, aerospace and other important fields, and their reliability is greatly affected by external vibration excitation during service. Due to the large volume and high cost of the combined structure of shaking table and test chamber, this paper designed a dynamic reliability test bed specially for rolling bearings to study the influence of external vibration excitation with different directions, frequencies and amplitudes on vibration signals and service life of rolling bearings. The test bed is loaded with external excitation by means of electromagnetic shakers in two directions, and the flexible material is used to realize the displacement of the test chamber under two external excitation directions at the same time. The bearing vibration loading life test carried out by this test bed has important guiding significance for the design of rolling bearing. The experimental results show that the test bed can apply axial and radial vibration loads of 1-800Hz sinusoidal waveform, and the vibration acceleration can reach 1g, which can simulate the effect of actual working conditions.


2021 ◽  
Vol 11 (19) ◽  
pp. 8864
Author(s):  
Li Jiang ◽  
Zhenyue Ma ◽  
Jianwei Zhang ◽  
Mohd Yawar Ali Khan ◽  
Mengran Cheng ◽  
...  

The measured vibrational responses of the pumping station pipeline in the irrigation site were chosen to confirm the chaotic characteristics of the pumping station pipeline vibration and to determine the vibrational excitation that makes it chaotic. First, the chaotic properties of the pipeline vibration responses were investigated using a saturation correlation dimension and the maximum Lyapunov exponent. The vibration excitation with chaotic features was obtained using an improved variational mode decomposition (IVMD) method to examine the multi-time-scale chaotic characteristics of the pipeline vibration responses. The results show that the vibrational responses of each measuring point of the pipeline under different operating conditions have clear chaotic characteristics, where the chaotic characteristics of the axial points and bifurcated pipe points are relatively strong. The vibration of the operating conditions and measurement points affected by the unit’s operation and flow state change is further complicated. The intrinsic mode function (IMF) produces a low-dimensional chaotic attractor after the IVMD disrupts the vibration response. Still, the vibration excitation of the remaining components on behalf of the units does not have chaotic properties, implying that water pulsation excitation makes the pumping station pipeline vibrations chaotic. The vibration excitation caused by the unit’s operation covers the chaotic characteristics of the pipeline vibration and increases its uncertainty. The outcomes of this study provide a theoretical basis for further exploration of the vibration characteristics of pumping station pipelines, and a new method of chaos analysis is proposed.


2021 ◽  
Author(s):  
Bernd Köhler ◽  
Kilian Tschöke ◽  
Mareike Stephan ◽  
Sergey Gartsev ◽  
Martin Barth

Abstract In this contribution we study vibration testing for ceramic parts on the example of an electrolyte cup, used in a prospective power cells design. An adapted experimental arrangement for the vibration excitation and the acoustic measurements was built and tested. In parallel, extensive numerical modal analysis simulations were performed using ANSYS. The resonance spectra obtained by modelling agree with the experimentally determined spectra in such a way that the experimentally determined eigenfrequencies can be assigned to the cup modes. The correctness of this identification was verified by direct mode visualization with scanning laser doppler vibrometry. A much faster and potentially in-line capable method for experimental mode identification is the simultaneous measurement at several points using a microphone array and subsequent signal evaluation with operational modal analysis. This procedure was successfully tested. Features in the spectra connected with the presence of flaws are discussed. These features include the drop of some eigenfrequencies and the splitting of degenerated modes.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Wenjie Zhang ◽  
Qichao Wang ◽  
Zheng Xu ◽  
Hongmei Xu ◽  
Hang Li ◽  
...  

In order to investigate the effects of hand-arm posture, grip force, push force, and vibration excitation intensity on the mechanical impedance of human hand-arm system, a test system with a self-developed vibration handle has been prepared. Based on the testing system, the mechanical impedance of the hand-arm system of seven Chinese adult males were tested and calculated under the random vibration excitation with the frequency of 10–1000 Hz. The results reveal that when the frequency is lower (<40 Hz), the hand-arm system with an elbow angle of 180o produces a higher mechanical impedance; when the frequency ranges from 40 Hz to 100 Hz, the hand-arm system with an elbow angle of 90o generates a higher mechanical impedance; while when the frequency is higher (>100 Hz), the hand-arm posture seems to have no obvious effect on the mechanical impedance. Higher grip or push force would increase the frequency corresponding to the peak value of the mechanical impedance and often correspond to a higher mechanical impedance in a specific frequency range (30–200 Hz). When the frequency is lower (<140 Hz), vibration intensity has certain effects on the mechanical impedance of the hand-arm system. In conclusion, vibration intensity does not directly affect the mechanical impedance, but an increase in grip or push force often causes an increase in mechanical impedance and a higher frequency that corresponds to the peak of mechanical impedance.


2021 ◽  
Vol 9 (3) ◽  
pp. 274
Author(s):  
Cui Dai ◽  
Yuhang Zhang ◽  
Qi Pan ◽  
Liang Dong ◽  
Houlin Liu

In order to study the vibration mechanism of a marine centrifugal pump unit and explore the contribution of vibration caused by different vibration excitation sources, a marine centrifugal pump with a specific speed of 66.7 was used for research. A numerical calculation model of the flow field and electromagnetic field of the pump unit was established to analyze the frequency spectrum characteristics and contribution of pump unit vibration caused by different excitation sources. Using the modal superposition method, the vibration characteristics of the pump unit caused by fluid excitation and electromagnetic excitation were analyzed. The results show that the main frequency of pump unit vibration caused by fluid excitation was at the 1× blade passing frequency. The main frequency of pump unit vibration caused by electromagnetic excitation was at the 2× utility frequency. The contribution of different excitation sources to the vibration of marine centrifugal pump unit was in the following order: fluid excitation on the inner surface of the pump > electromagnetic excitation > fluid excitation in the impeller.


Sign in / Sign up

Export Citation Format

Share Document