scholarly journals Energy Management Modelling Under Real-time Approach

Author(s):  
Irina Oleinikova ◽  
Anna Mutule ◽  
Ivars Zikmanis ◽  
Ervin Grebesh
Keyword(s):  
Author(s):  
Mohsen Ansari ◽  
Amir Yeganeh-Khaksar ◽  
Sepideh Safari ◽  
Alireza Ejlali

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5538
Author(s):  
Bảo-Huy Nguyễn ◽  
João Pedro F. Trovão ◽  
Ronan German ◽  
Alain Bouscayrol

Optimization-based methods are of interest for developing energy management strategies due to their high performance for hybrid electric vehicles. However, these methods are often complicated and may require strong computational efforts, which can prevent them from real-world applications. This paper proposes a novel real-time optimization-based torque distribution strategy for a parallel hybrid truck. The strategy aims to minimize the engine fuel consumption while ensuring battery charge-sustaining by using linear quadratic regulation in a closed-loop control scheme. Furthermore, by reformulating the problem, the obtained strategy does not require the information of the engine efficiency map like the previous works in literature. The obtained strategy is simple, straightforward, and therefore easy to be implemented in real-time platforms. The proposed method is evaluated via simulation by comparison to dynamic programming as a benchmark. Furthermore, the real-time ability of the proposed strategy is experimentally validated by using power hardware-in-the-loop simulation.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1060
Author(s):  
Md Mamun Ur Rashid ◽  
Majed A. Alotaibi ◽  
Abdul Hasib Chowdhury ◽  
Muaz Rahman ◽  
Md. Shafiul Alam ◽  
...  

From a residential point of view, home energy management (HEM) is an essential requirement in order to diminish peak demand and utility tariffs. The integration of renewable energy sources (RESs) together with battery energy storage systems (BESSs) and central battery storage system (CBSS) may promote energy and cost minimization. However, proper home appliance scheduling along with energy storage options is essential to significantly decrease the energy consumption profile and overall expenditure in real-time operation. This paper proposes a cost-effective HEM scheme in the microgrid framework to promote curtailing of energy usage and relevant utility tariff considering both energy storage and renewable sources integration. Usually, the household appliances have different runtime preferences and duration of operation based on user demand. This work considers a simulator designed in the C++ platform to address the domestic customer’s HEM issue based on usages priorities. The positive aspects of merging RESs, BESSs, and CBSSs with the proposed optimal power sharing algorithm (OPSA) are evaluated by considering three distinct case scenarios. Comprehensive analysis of each scenario considering the real-time scheduling of home appliances is conducted to substantiate the efficacy of the outlined energy and cost mitigation schemes. The results obtained demonstrate the effectiveness of the proposed algorithm to enable energy and cost savings up to 37.5% and 45% in comparison to the prevailing methodology.


2021 ◽  
Vol 22 (1) ◽  
pp. 85-100
Author(s):  
Suchitra Dayalan ◽  
Rajarajeswari Rathinam

Abstract Microgrid is an effective means of integrating multiple energy sources of distributed energy to improve the economy, stability and security of the energy systems. A typical microgrid consists of Renewable Energy Source (RES), Controllable Thermal Units (CTU), Energy Storage System (ESS), interruptible and uninterruptible loads. From the perspective of the generation, the microgrid should be operated at the minimum operating cost, whereas from the perspective of demand, the energy cost imposed on the consumer should be minimum. The main key in controlling the relationship of microgrid with the utility grid is managing the demand. An Energy Management System (EMS) is required to have real time control over the demand and the Distributed Energy Resources (DER). Demand Side Management (DSM) assesses the actual demand in the microgrid to integrate different energy resources distributed within the grid. With these motivations towards the operation of a microgrid and also to achieve the objective of minimizing the total expected operating cost, the DER schedules are optimized for meeting the loads. Demand Response (DR) a part of DSM is integrated with MG islanded mode operation by using Time of Use (TOU) and Real Time Pricing (RTP) procedures. Both TOU and RTP are used for shifting the controllable loads. RES is used for generator side cost reduction and load shifting using DR performs the load side control by reducing the peak to average ratio. Four different cases with and without the PV, wind uncertainties and ESS are analyzed with Demand Response and Unitcommittment (DRUC) strategy. The Strawberry (SBY) algorithm is used for obtaining the minimum operating cost and to achieve better energy management of the Microgrid.


Sign in / Sign up

Export Citation Format

Share Document