Impact of Air Mass on Energy Yield Calculation for Bifacial Silicon Heterojunction Photovoltaic Modules in High-Latitude Conditions

Author(s):  
Mandy R. Lewis ◽  
Annie C. J. Russell ◽  
Christopher E. Valdivia ◽  
Joan E. Haysom ◽  
Mariana I. Bertoni ◽  
...  
2019 ◽  
Vol 11 (22) ◽  
pp. 6234 ◽  
Author(s):  
Hyeonwook Park ◽  
Sungho Chang ◽  
Sanghwan Park ◽  
Woo Kyoung Kim

The outdoor performance of n-type bifacial Si photovoltaic (PV) modules and string systems was evaluated for two different albedo (ground reflection) conditions, i.e., 21% and 79%. Both monofacial and bifacial silicon PV modules were prepared using n-type bifacial Si passivated emitter rear totally diffused cells with multi-wire busbar incorporated with a white and transparent back-sheet, respectively. In the first set of tests, the power production of the bifacial PV string system was compared with the monofacial PV string system installed on a grey concrete floor with an albedo of ~21% for approximately one year (June 2016–May 2017). In the second test, the gain of the bifacial PV string system installed on the white membrane floor with an albedo of ~79% was evaluated for approximately ten months (November 2016–August 2017). During the second test, the power production by an equivalent monofacial module installed on a horizontal solar tracker was also monitored. The gain was estimated by comparing the energy yield of the bifacial PV module with that of the monofacial module. For the 1.5 kW PV string systems with a 30° tilt angle to the south and 21% ground albedo, the year-wide average bifacial gain was determined to be 10.5%. An increase of the ground albedo to 79% improved the bifacial gain to 33.3%. During the same period, the horizontal single-axis tracker yielded an energy gain of 15.8%.


2009 ◽  
Vol 9 (6) ◽  
pp. 27267-27301 ◽  
Author(s):  
C. S. Boxe ◽  
J. R. Worden ◽  
K. W. Bowman ◽  
S. S. Kulawik ◽  
J. L. Neu ◽  
...  

Abstract. We compare Tropospheric Emission Spectrometre (TES) versions 3 and 4, V003 and V004, respectively, nadir-stare ozone profiles with ozonesonde profiles from the Arctic Intensive Ozonesonde Network Study (ARCIONS, http://http://croc.gsfc.nasa.gov/arcions/) during the Arctic Research on the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field mission. The ozonesonde data are from launches timed to match the Aura's overpass, where 11 coincidences spanned 44° N to 71° N from April to July 2008. Using the TES "stare" observation mode, 32 observations are taken over each coincident ozonesonde launch. By effectively sampling the same air mass 32 times, comparisons are made between the empirically-calculated random errors to the expected random errors from measurement noise, temperature and interfering species, such as water. This study represents the first validation of high latitude (>60°) TES ozone. We find that the calculated errors are consistent with the actual errors with a similar vertical distribution that varies between 5% and 20% for V003 and V004 TES data. In general, TES ozone profiles are positively biased (by less than 15%) from the surface to the upper troposphere (~1000 to 100 hPa) and negatively biased (by less than 20%) from the upper troposphere to the lower stratosphere (100 to 30 hPa) when compared to the ozonesonde data. Lastly, for V003 and V004 TES data between 44° N and 71° N there is a small variability in the mean biases (from −14 to +15%), mean theoretical errors (from 6 to 13%), and mean random errors (from 9 to 19%).


2010 ◽  
Vol 10 (20) ◽  
pp. 9901-9914 ◽  
Author(s):  
C. S. Boxe ◽  
J. R. Worden ◽  
K. W. Bowman ◽  
S. S. Kulawik ◽  
J. L. Neu ◽  
...  

Abstract. We compare Tropospheric Emission Spectrometer (TES) versions 3 and 4, V003 and V004, respectively, nadir-stare ozone profiles with ozonesonde profiles from the Arctic Intensive Ozonesonde Network Study (ARCIONS, http://croc.gsfc.nasa.gov/arcions/ during the Arctic Research on the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) field mission. The ozonesonde data are from launches timed to match Aura's overpass, where 11 coincidences spanned 44° N to 71° N from April to July 2008. Using the TES "stare" observation mode, 32 observations are taken over each coincidental ozonesonde launch. By effectively sampling the same air mass 32 times, comparisons are made between the empirically-calculated random errors to the expected random errors from measurement noise, temperature and interfering species, such as water. This study represents the first validation of high latitude (>70°) TES ozone. We find that the calculated errors are consistent with the actual errors with a similar vertical distribution that varies between 5% and 20% for V003 and V004 TES data. In general, TES ozone profiles are positively biased (by less than 15%) from the surface to the upper-troposphere (~1000 to 100 hPa) and negatively biased (by less than 20%) from the upper-troposphere to the lower-stratosphere (100 to 30 hPa) when compared to the ozonesonde data. Lastly, for V003 and V004 TES data between 44° N and 71° N there is variability in the mean biases (from −14 to +15%), mean theoretical errors (from 6 to 13%), and mean random errors (from 9 to 19%).


2016 ◽  
Vol 9 (8) ◽  
pp. 2644-2653 ◽  
Author(s):  
Jonathan P. Mailoa ◽  
Mitchell Lee ◽  
Ian M. Peters ◽  
Tonio Buonassisi ◽  
Alex Panchula ◽  
...  

Polycrystalline, thin-film tandem solar cells that leverage commercial II–VI semiconductor technologies as the top cell could overcome the practical conversion-efficiency limits of single-junction solar cells. In this paper we provide energy-yield calculation of a solar cell – single-junction and tandem – in a real-world climate conditions.


2014 ◽  
Vol 23 (3) ◽  
pp. 385-397 ◽  
Author(s):  
Marc Steiner ◽  
Gerald Siefer ◽  
Thorsten Hornung ◽  
Gerhard Peharz ◽  
Andreas W. Bett

Sign in / Sign up

Export Citation Format

Share Document