scholarly journals Outdoor Performance Test of Bifacial n-Type Silicon Photovoltaic Modules

2019 ◽  
Vol 11 (22) ◽  
pp. 6234 ◽  
Author(s):  
Hyeonwook Park ◽  
Sungho Chang ◽  
Sanghwan Park ◽  
Woo Kyoung Kim

The outdoor performance of n-type bifacial Si photovoltaic (PV) modules and string systems was evaluated for two different albedo (ground reflection) conditions, i.e., 21% and 79%. Both monofacial and bifacial silicon PV modules were prepared using n-type bifacial Si passivated emitter rear totally diffused cells with multi-wire busbar incorporated with a white and transparent back-sheet, respectively. In the first set of tests, the power production of the bifacial PV string system was compared with the monofacial PV string system installed on a grey concrete floor with an albedo of ~21% for approximately one year (June 2016–May 2017). In the second test, the gain of the bifacial PV string system installed on the white membrane floor with an albedo of ~79% was evaluated for approximately ten months (November 2016–August 2017). During the second test, the power production by an equivalent monofacial module installed on a horizontal solar tracker was also monitored. The gain was estimated by comparing the energy yield of the bifacial PV module with that of the monofacial module. For the 1.5 kW PV string systems with a 30° tilt angle to the south and 21% ground albedo, the year-wide average bifacial gain was determined to be 10.5%. An increase of the ground albedo to 79% improved the bifacial gain to 33.3%. During the same period, the horizontal single-axis tracker yielded an energy gain of 15.8%.

2018 ◽  
Vol 6 (1) ◽  
pp. 35
Author(s):  
Joel A. Ezenwora ◽  
David O. Oyedum ◽  
Paulinus E. Ugwuoke

There is need to always obtain the realistic outdoor performance variables of Photovoltaic (PV) module in a location for efficient PV power system sizing and design. Outdoor performance evaluation was carried out on three types of commercially available silicon PV modules rated 10 W each, using CR1000 software-based Data Acquisition System (DAS). The PV modules under test and meteorological sensors were installed on a metal support structure at the same test plane.The data monitoring was from 08.00 to 18.00 hours each day continuously for a period of one year, from December 2014 to November 2015. Maximum values of module efficiencies of 5.86% and 10.91% for the monocrystalline and polycrystalline modules were respectively recorded at irradiance of 375 W/m2, while the amorphous efficiency peaked at 3.61 % with irradiance of 536.5 W/m2. At 1000 W/m2 the efficiencies reduced to 3.30 %, 6.20 % and 2.25 % as against manufacturer’s specifications of 46 %, 48 % and 33 % for the monocrystalline, polycrystalline and amorphous modules respectively. The maximum power output achieved for the modules at irradiance of 1000 W/m2 were 0.711 W, 1.323 W and 0.652 W for the monocrystalline, polycrystalline and amorphous PV modules, respectively. Accordingly, Module Performance Ratios for the PV modules investigated were 0.07, 0.13 and 0.07, respectively. The rate of variation of module response variables with irradiance and temperature was determined using a linear statistical model given as Y= a + bHg+ c Tmod. The approach performed creditably when compared with measured data.


Author(s):  
Motlatsi C. Lehloka ◽  
◽  
James A. Swart ◽  
Pierre E. Hertzog

A photovoltaic (PV) module converts solar energy into electrical energy. In order to increase the output power of any PV module, several factors including tilt angle, orientation angle, load profile, environmental condition, latitude of the location site, and energy management techniques should be considered. It is essential to continuously deliver the highest possible power to a load for a given day, which may be achieved by using a tracking-type system as compared to a fixed-type system. The purpose of this paper is to present the results of an algorithm that may be applied to a dual-axis system located in an elevated plateau of the interior of South Africa in order to sustain a high output power. Two identical 310W PV modules were used for a fixed-type and tracking-type system. The fixed-type system was installed at a tilt angle of Latitude minus 10° serving as a baseline to the tracking-type system. A LabView user interface was developed to record and display the voltage and current measurements from the PV modules. Results indicate that the dual-axis tracking-type system extracted more power (on average 39.32% more power) as compared to the fixed-type system. A key recommendation is to use a linear regression algorithm with a tracking-type system to enable a higher output energy yield for a given day.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2308
Author(s):  
Kamran Ali Khan Niazi ◽  
Yongheng Yang ◽  
Tamas Kerekes ◽  
Dezso Sera

Partial shading affects the energy harvested from photovoltaic (PV) modules, leading to a mismatch in PV systems and causing energy losses. For this purpose, differential power processing (DPP) converters are the emerging power electronic-based topologies used to address the mismatch issues. Normally, PV modules are connected in series and DPP converters are used to extract the power from these PV modules by only processing the fraction of power called mismatched power. In this work, a switched-capacitor-inductor (SCL)-based DPP converter is presented, which mitigates the non-ideal conditions in solar PV systems. A proposed SCL-based DPP technique utilizes a simple control strategy to extract the maximum power from the partially shaded PV modules by only processing a fraction of the power. Furthermore, an operational principle and loss analysis for the proposed converter is presented. The proposed topology is examined and compared with the traditional bypass diode technique through simulations and experimental tests. The efficiency of the proposed DPP is validated by the experiment and simulation. The results demonstrate the performance in terms of higher energy yield without bypassing the low-producing PV module by using a simple control. The results indicate that achieved efficiency is higher than 98% under severe mismatch (higher than 50%).


Author(s):  
Heangwoo Lee ◽  
Xiaolong Zhao ◽  
Janghoo Seo

Recent studies on light shelves found that building energy efficiency could be maximized by applying photovoltaic (PV) modules to light shelf reflectors. Although PV modules generate a substantial amount of heat and change the consumption of indoor heating and cooling energy, performance evaluations carried out thus far have not considered these factors. This study validated the effectiveness of PV module light shelves and determined optimal specifications while considering heating and cooling energy savings. A full-scale testbed was built to evaluate performance according to light shelf variables. The uniformity ratio was found to improve according to the light shelf angle value and decreased as the PV module installation area increased. It was determined that PV modules should be considered in the design of light shelves as their daylighting and concentration efficiency change according to their angles. PV modules installed on light shelves were also found to change the indoor cooling and heating environment; the degree of such change increased as the area of the PV module increased. Lastly, light shelf specifications for reducing building energy, including heating and cooling energy, were not found to apply to PV modules since PV modules on light shelf reflectors increase building energy consumption.


2017 ◽  
Vol 2017 ◽  
pp. 1-19 ◽  
Author(s):  
Vandana Jha ◽  
Uday Shankar Triar

This paper proposes an improved generalized method for evaluation of parameters, modeling, and simulation of photovoltaic modules. A new concept “Level of Improvement” has been proposed for evaluating unknown parameters of the nonlinear I-V equation of the single-diode model of PV module at any environmental condition, taking the manufacturer-specified data at Standard Test Conditions as inputs. The main contribution of the new concept is the improvement in the accuracy of values of evaluated parameters up to various levels and is based on mathematical equations of PV modules. The proposed evaluating method is implemented by MATLAB programming and, for demonstration, by using the values of parameters of the I-V equation obtained from programming results, a PV module model is build with MATLAB. The parameters evaluated by the proposed technique are validated with the datasheet values of six different commercially available PV modules (thin film, monocrystalline, and polycrystalline) at Standard Test Conditions and Nominal Operating Cell Temperature Conditions. The module output characteristics generated by the proposed method are validated with experimental data of FS-270 PV module. The effects of variation of ideality factor and resistances on output characteristics are also studied. The superiority of the proposed technique is proved.


Author(s):  
Nsed Ayip Akonjom ◽  
John Iyang Umuji ◽  
Ukoette Jeremiah Ekah

This central idea of this research is to investigate how voltage, current, power output and efficiency of polycrystalline photovoltaic (PV) modules installed in a Guinea Savanna and Mangrove Swamp is affected by temperature, relative humidity and irradiance. The study locations are Calabar (mangrove swamp) and Ogoja (guinea savanna), in Cross River State, Nigeria. Two polycrystalline PV modules of exact specification mounted on a platform one-metre-high above the ground were used. A digital solar power meter (SM206) and a digital solar flux meter (MS 6616) was used to monitor and measure solar power and solar flux reaching the PV modules. A digital hygrometer and thermometer (KT-908) were used to monitor and measure the relative humidity and ambient temperature level at the height of installation and a digital multimeter (M880C+) accompanied with a temperature sensor was used to monitor voltage, current and panel temperature values from the modules. Analysis of the collected data reveals that the efficiency of the modules were not constant throughout the day. However, a higher voltage production and efficiency level was obtained for the PV module installed in Ogoja than that installed in Calabar under their respective levels of relative humidity, temperature and irradiance.


2018 ◽  
Vol 8 (6) ◽  
pp. 3570-3575
Author(s):  
E. V. Palconit ◽  
M. L. S. Abundo

An electric boat system as a pilot study for the electric ferry was designed and field-tested in Samal Island, Philippines, to verify sustainability for inter-island transport. This pilot study uses 4.5m monohull with a displacement weight of 343kg. During the experiment, two cases were compared: in the first case the boat was powered solely with batteries and in the other case with the aid of photovoltaic (PV) modules. For the first case, 24V electric propulsion was driven by two 12V, 100Ah batteries, which resulted to a navigational range of around 18, 16 and 15 trips with energy consumption of 111.64Wh, 117.19Wh and 123.92Wh respectively. In the second case, the photovoltaic modules were attached on the boat to supplement the PV used while on sail. Results in the second case showed that PV module supplemented energy was about to 13.4%, 26.8% and 38.7% using three different speeds like 3.18, 3.32 and 3.84knots and the navigational range extended to 4km, 1km, and 14.4km respectively. Therefore, the electric boat with the aid of PV module answers the problem in the energy management system that deals with the sustainability of the system in the inter-island transport in Philippines.


Author(s):  
C. Calò ◽  
A. Lay-Ekuakille ◽  
P. Vergallo ◽  
C. Chiffi ◽  
A. Trotta ◽  
...  

One of the most important aspects of photovoltaic modules is reliability for future uses, that is, a certain module will last certain number of years in use (generally 30 or 35 years). Reliability yields from excellent qualification tests on photovoltaic (PV) modules. Testing for reliability identifies unknown failure mechanisms and whether modules are susceptible to known failure mechanisms. This paper illustrates techniques of outdoor measurements and qualification characterization to know PV module conditions for commercial uses. Matrix methods are used for energy prediction. Failure material tests, using digital imaging and thermography, have also been conducted.


Author(s):  
Sivaraman P. ◽  
Sharmeela C.

A solar micro inverter is a small-size inverter designed for single solar PV module instead of group of solar PV modules. Each module is equipped with a micro inverter to convert the DC electricity into AC electricity and the micro inverter is placed/installed below the module. The advantages of micro inverters are: reduced effect of shading losses, module degradation and soiling losses, enabled module independence, different rating of micro inverter can be connected in parallel to achieve the desired capacity, additional modules can be included at time which allows the good scalability, string design and sizing are avoided, failure of any micro inverter does not affect the overall power generation, individual MPPT controller for each module increases the power generation, any orientation and tilt angle allows higher design flexibility, lower DC voltage increasing the safety, easy to design, handle and install, requires less maintenance, draws attention of design engineers, contractors, etc.


2020 ◽  
Vol 10 (3) ◽  
pp. 872 ◽  
Author(s):  
Kenji Araki ◽  
Yasuyuki Ota ◽  
Masafumi Yamaguchi

The energy yield of vehicle-integrated photovoltaics (VIPV) differs from that of standard photovoltaics (PV). It is mainly by the difference of the solar irradiance onto the car roof and car bodies as well as its curved shape. Both meaningful and practical modeling and measurement of solar irradiance for VIPV need to be established, rather than the extension of the current technologies. The solar irradiance is modeled by a random distribution of shading objects and car orientation with the correction of the curved surface of the PV modules. The measurement of the solar irradiance onto the car roof and car body is done using five pyranometers in five local axes on the car for one year. The measured dynamic solar irradiance onto the car body and car roof is used for validation of the solar irradiance model in the car.


Sign in / Sign up

Export Citation Format

Share Document