Aircraft detection and tracking with high frequency radar

Author(s):  
R.H. Khan ◽  
D. Power
2011 ◽  
Vol 45 (3) ◽  
pp. 14-24 ◽  
Author(s):  
Hugh J. Roarty ◽  
Erick Rivera Lemus ◽  
Ethan Handel ◽  
Scott M. Glenn ◽  
Donald E. Barrick ◽  
...  

AbstractHigh-frequency (HF) surface wave radar has been identified to be a gap-filling technology for Maritime Domain Awareness. Present SeaSonde HF radars have been designed to map surface currents but are able to track surface vessels in a dual-use mode. Rutgers and CODAR Ocean Sensors, Ltd., have collaborated on the development of vessel detection and tracking capabilities from compact HF radars, demonstrating that ships can be detected and tracked by multistatic HF radar in a multiship environment while simultaneously mapping ocean currents. Furthermore, the same vessel is seen simultaneously by the radar based on different processing parameters, mitigating the need to preselect a fixed set and thereby improving detection performance.


2011 ◽  
Vol 45 (3) ◽  
pp. 49-58 ◽  
Author(s):  
Jorge E. Corredor ◽  
Andre Amador ◽  
Miguel Canals ◽  
Samuel Rivera ◽  
Jorge E. Capella ◽  
...  

AbstractThe Mona Passage is a major shipping lane to the Panama Canal and a key route for illegal traffic into the United States. We have emplaced two high-frequency radar (HFR) stations on the west coast of Puerto Rico intended to allow mapping of the ocean surface velocity field of the eastern Mona Passage and to explore its performance in vessel detection and tracking. The array provides coverage of the southeastern quadrant of the Passage extending west to Mona Island and north to Rincon. Hourly results are posted online in near-real time. To optimize our results, we twice measured the antenna beam patterns and applied these corrections to the resulting radial returns. To assess the basic capability of the Mona Passage HFR array to measure surface currents in this tropical environment, we undertook validation measurements, including repeated deployment of Lagrangian drifters, deployment of an acoustic Doppler current profiler, and comparison with modeled tidal currents. Our experimental measurements showed good agreement to both modeled and in situ data lending confidence to the area-wide surface current maps generated by this system. Repeated measurements showed limited temporal variability of antenna distortion patterns, demonstrating that these are in large part the product of the surrounding environment. Comparison between a numerical particle tracking algorithm and experimental Lagrangian trajectories showed mixed results, with better agreement during periods of low intrahour variability in current direction than during periods of rapid tidal reversal.


2013 ◽  
Vol 7 (8) ◽  
pp. 875-880 ◽  
Author(s):  
Ting Li ◽  
Guobin Yang ◽  
Pengxun Wang ◽  
Gang Chen ◽  
Chen Zhou ◽  
...  

2011 ◽  
Vol 33 (10) ◽  
pp. 2477-2482
Author(s):  
Huan He ◽  
Heng-yu Ke ◽  
Xian-rong Wan ◽  
Fang-zhi Geng

2020 ◽  
Vol 70 (12) ◽  
pp. 1485-1503
Author(s):  
Dylan Dumas ◽  
Anthony Gramoullé ◽  
Charles-Antoine Guérin ◽  
Anne Molcard ◽  
Yann Ourmières ◽  
...  

2014 ◽  
Vol 7 (2) ◽  
pp. 59-73 ◽  
Author(s):  
P Lorente ◽  
J Soto-Navarro ◽  
E Alvarez Fanjul ◽  
S Piedracoba

Sign in / Sign up

Export Citation Format

Share Document