Pedestrian detection procedure integrated into an 24 GHz automotive radar

Author(s):  
Hermann Rohling ◽  
Steffen Heuel ◽  
Henning Ritter
2017 ◽  
Author(s):  
Sujeet Patole ◽  
Murat Torlak ◽  
Dan Wang ◽  
Murtaza Ali

Automotive radars, along with other sensors such as lidar, (which stands for “light detection and ranging”), ultrasound, and cameras, form the backbone of self-driving cars and advanced driver assistant systems (ADASs). These technological advancements are enabled by extremely complex systems with a long signal processing path from radars/sensors to the controller. Automotive radar systems are responsible for the detection of objects and obstacles, their position, and speed relative to the vehicle. The development of signal processing techniques along with progress in the millimeter- wave (mm-wave) semiconductor technology plays a key role in automotive radar systems. Various signal processing techniques have been developed to provide better resolution and estimation performance in all measurement dimensions: range, azimuth-elevation angles, and velocity of the targets surrounding the vehicles. This article summarizes various aspects of automotive radar signal processing techniques, including waveform design, possible radar architectures, estimation algorithms, implementation complexity-resolution trade-off, and adaptive processing for complex environments, as well as unique problems associated with automotive radars such as pedestrian detection. We believe that this review article will combine the several contributions scattered in the literature to serve as a primary starting point to new researchers and to give a bird’s-eye view to the existing research community.


2003 ◽  
Vol 1 ◽  
pp. 197-200
Author(s):  
M. R. Kühn ◽  
E. M. Biebl

Abstract. An increasing number of applications is proposed for the 24 GHz ISM-band, like automotive radar systems and short-range communication links. These applications demand for oscillators providing moderate output power of a few mW and moderate frequency stability of about 0.5%. The maximum oscillation frequency of low-cost off-theshelf transistors is too low for stable operation of a fundamental 24GHz oscillator. Thus, we designed a 24 GHz first harmonic oscillator, where the power generated at the fundamental frequency (12 GHz) is reflected resulting in effective generation of output power at the first harmonic. We measured a radiated power from an integrated planar antenna of more than 1mW. Though this oscillator provides superior frequency stability compared to fundamental oscillators, for some applications additional stabilization is required. As a low-cost measure, injection locking can be used to phase lock oscillators that provide sufficient stability in free running mode. Due to our harmonic oscillator concept injection locking has to be achieved at the first harmonic, since only the antenna is accessible for signal injection. We designed, fabricated and characterized a harmonic oscillator using the antenna as a port for injection locking. The locking range was measured versus various parameters. In addition, phase-noise improvement was investigated. A theoretical approach for the mechanism of first harmonic injection locking is presented.


Author(s):  
Alexey A. Belyaev ◽  
Timur A. Suanov ◽  
Igor O. Frolov ◽  
Dmitriy O. Trots

2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Ushemadzoro Chipengo ◽  
Peter M. Krenz ◽  
Shawn Carpenter

Advanced driver assistance systems (ADAS) have recently been thrust into the spotlight in the automotive industry as carmakers and technology companies pursue effective active safety systems and fully autonomous vehicles. Various sensors such as lidar (light detection and ranging), radar (radio detection and ranging), ultrasonic, and optical cameras are employed to provide situational awareness to vehicles in a highly dynamic environment. Radar has emerged as a primary sensor technology for both active/passive safety and comfort-advanced driver-assistance systems. Physically building and testing radar systems to demonstrate reliability is an expensive and time-consuming process. Simulation emerges as the most practical solution to designing and testing radar systems. This paper provides a complete, full physics simulation workflow for automotive radar using finite element method and asymptotic ray tracing electromagnetic solvers. The design and optimization of both transmitter and receiver antennas is presented. Antenna interaction with vehicle bumper and fascia is also investigated. A full physics-based radar scene corner case is modelled to obtain high-fidelity range-Doppler maps. Finally, this paper investigates the effects of inclined roads on late pedestrian detection and the effects of construction metal plate radar returns on false target identification. Possible solutions are suggested and validated. Results from this study show how pedestrian radar returns can be increased by over 16 dB for early detection along with a 27 dB reduction in road construction plate radar returns to suppress false target identification. Both solutions to the above corner cases can potentially save pedestrian lives and prevent future accidents.


Author(s):  
Michael Heuer ◽  
Ayoub Al-Hamadi ◽  
Alexander Rain ◽  
Marc-Michael Meinecke ◽  
Hermann Rohling

Author(s):  
L. Moquillon ◽  
P. Garcia ◽  
S. Pruvost ◽  
S. Le Tual ◽  
M. Marchetti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document