A multi-pass coherent change detection method for SAR images in weak change circumstance

Author(s):  
Ju Lin ◽  
Yulin Huang ◽  
Jifang Pei ◽  
Haiguang Yang ◽  
Jianyu Yang
2021 ◽  
Vol 13 (7) ◽  
pp. 1236
Author(s):  
Yuanjun Shu ◽  
Wei Li ◽  
Menglong Yang ◽  
Peng Cheng ◽  
Songchen Han

Convolutional neural networks (CNNs) have been widely used in change detection of synthetic aperture radar (SAR) images and have been proven to have better precision than traditional methods. A two-stage patch-based deep learning method with a label updating strategy is proposed in this paper. The initial label and mask are generated at the pre-classification stage. Then a two-stage updating strategy is applied to gradually recover changed areas. At the first stage, diversity of training data is gradually restored. The output of the designed CNN network is further processed to generate a new label and a new mask for the following learning iteration. As the diversity of data is ensured after the first stage, pixels within uncertain areas can be easily classified at the second stage. Experiment results on several representative datasets show the effectiveness of our proposed method compared with several existing competitive methods.


Author(s):  
Jianlong Zhang ◽  
Mengying Cui ◽  
Bin Wang ◽  
Chen Chen ◽  
Yang Zhou ◽  
...  

Author(s):  
D. Oxoli ◽  
P. Boccardo ◽  
M. A. Brovelli ◽  
M. E. Molinari ◽  
A. Monti Guarnieri

<p><strong>Abstract.</strong> During disaster response, the availability of relevant information, delivered in a proper format enabling its use among the different actors involved in response efforts, is key to lessen the impact of the disaster itself. Focusing on the contribution of geospatial information, meaningful advances have been achieved through the adoption of satellite earth observations within emergency management practices. Among these technologies, the Synthetic Aperture Radar (SAR) imaging has been extensively employed for large-scale applications such as flood areas delineation and terrain deformation analysis after earthquakes. However, the emerging availability of higher spatial and temporal resolution data has uncovered the potential contribution of SAR to applications at a finer scale. This paper proposes an approach to enable pixel-wise earthquake damage assessments based on Coherent Change Detection methods applied to a stack of repeated-pass interferometric SAR images. A preliminary performance assessment of the procedure is provided by processing Sentinel-1 data stack related to the 2016 central Italy earthquake for the towns of Ametrine and Accumoli. Damage assessment maps from photo-interpretation of high-resolution airborne imagery, produced in the framework of Copernicus EMS (Emergency Management Service &amp;ndash; European Commission) and cross-checked with field survey, is used as ground truth for the performance assessment. Results show the ability of the proposed approach to automatically identify changes at an almost individual building level, thus enabling the possibility to empower traditional damage assessment procedures from optical imagery with the centimetric change detection sensitivity characterizing SAR. The possibility of disseminating outputs in a GIS-like format represents an asset for an effective and cross-cutting information sharing among decision makers and analysts.</p>


2014 ◽  
Vol 5 (4) ◽  
pp. 342-351 ◽  
Author(s):  
Yin Chen ◽  
Armin B. Cremers ◽  
Zhiguo Cao

2021 ◽  
Vol 253 ◽  
pp. 112152
Author(s):  
Marco Manzoni ◽  
Andrea Monti-Guarnieri ◽  
Monia Elisa Molinari

2020 ◽  
Vol 12 (18) ◽  
pp. 3057
Author(s):  
Nian Shi ◽  
Keming Chen ◽  
Guangyao Zhou ◽  
Xian Sun

With the development of remote sensing technologies, change detection in heterogeneous images becomes much more necessary and significant. The main difficulty lies in how to make input heterogeneous images comparable so that the changes can be detected. In this paper, we propose an end-to-end heterogeneous change detection method based on the feature space constraint. First, considering that the input heterogeneous images are in two distinct feature spaces, two encoders with the same structure are used to extract features, respectively. A decoder is used to obtain the change map from the extracted features. Then, the Gram matrices, which include the correlations between features, are calculated to represent different feature spaces, respectively. The squared Euclidean distance between Gram matrices, termed as feature space loss, is used to constrain the extracted features. After that, a combined loss function consisting of the binary cross entropy loss and feature space loss is designed for training the model. Finally, the change detection results between heterogeneous images can be obtained when the model is trained well. The proposed method can constrain the features of two heterogeneous images to the same feature space while keeping their unique features so that the comparability between features can be enhanced and better detection results can be achieved. Experiments on two heterogeneous image datasets consisting of optical and SAR images demonstrate the effectiveness and superiority of the proposed method.


2012 ◽  
Vol 22 ◽  
pp. 219-232 ◽  
Author(s):  
Azzedine Bouaraba ◽  
Arezki Younsi ◽  
Aichouche Belhadj Aissa ◽  
Marc Acheroy ◽  
Nada Milisavljevic ◽  
...  

Author(s):  
Jorge Prendes ◽  
Marie Chabert ◽  
Frédéric Pascal ◽  
Alain Giros ◽  
Jean-Yves Tourneret

A statistical model for detecting changes in remote sensing images has recently been proposed in (Prendes et al., 2014a,b). This model is sufficiently general to be used for homogeneous images acquired by the same kind of sensors (e.g., two optical images from Pléiades satellites, possibly with different acquisition conditions), and for heterogeneous images acquired by different sensors (e.g., an optical image acquired from a Pléiades satellite and a synthetic aperture radar (SAR) image acquired from a TerraSAR-X satellite). This model assumes that each pixel is distributed according to a mixture of distributions depending on the noise properties and on the sensor intensity responses to the actual scene. The parameters of the resulting statistical model can be estimated by using the classical expectation-maximization (EM) algorithm. The estimated parameters are finally used to learn the relationships between the images of interest, via a manifold learning strategy. These relationships are relevant for many image processing applications, particularly those requiring a similarity measure (e.g., image change detection and image registration). The main objective of this paper is to evaluate the performance of a change detection method based on this manifold learning strategy initially introduced in (Prendes et al., 2014a,b). This performance is evaluated by using results obtained with pairs of real optical images acquired from Pléiades satellites and pairs of optical and SAR images.


Sign in / Sign up

Export Citation Format

Share Document