3D positioning algorithm based on multiple quasi-monostatic IR-UWB radar sensors

Author(s):  
Jeong Woo Choi ◽  
Sung Ho Cho
Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 5988
Author(s):  
Jungwoo Seo ◽  
Jae Hee Kim ◽  
Jungsuek Oh

A microstrip-to-slot line-fed miniaturized Vivaldi antenna using semicircular patch embedment is proposed in this study. The conventional Vivaldi antenna has ultrawide bandwidth, but suffers from low gain in the low-frequency band. The proposed antenna topology incorporates the embedment of semicircular patch elements into the side edge of the antenna. This enables the phases of electric fields at both ends of the antenna to be out of phase. Since the distance between the two ends are λL/2 where λL is the wavelength at a low operating frequency, this antenna topology can achieve the constructive addition of electrical fields at the radiating end, leading to gain enhancement at the chosen low frequency. In comparison with the conventional Vivaldi antenna, the proposed antenna has a wider bandwidth from 2.84 to 9.83 GHz. Moreover, the simulated result shows a gain enhancement of 5 dB at low frequency. This cannot be realized by the conventional low-band impedance matching techniques only relying on slotted topologies. The measured results of this proposed antenna with a size of 45 × 40 × 0.8 mm3 are in good agreement with the simulated results.


2014 ◽  
Vol 668-669 ◽  
pp. 1194-1197 ◽  
Author(s):  
Yan Feng ◽  
Bo Yi

The three-dimensional positioning algorithm has become a hot research direction in wireless sensor networks localization algorithms, however the existing 3D positioning algorithms have general shortcomings, such as high complexity, low positioning accuracy, great energy consumption. Aiming at the existing problems of 3D localization algorithm, we propose an decentralized 3D positioning algorithm based on RSSI ranging and free ranging mechanism. The algorithm firstly use measured RSSI to establish beacon node neighborhood. Then the method adopts regional division to obtain initial location information for unknown nodes. Finally, the method use the iterative optimization process to achieve a position information updates. Simulation results demonstrate that proposed algorithm is feasible and has better localization accuracy.


Author(s):  
Ian Gresham ◽  
Alan Jenkins ◽  
Noyan Kinayman ◽  
Rob Point ◽  
Yumin Lu ◽  
...  
Keyword(s):  

Author(s):  
Jeong Woo Choi ◽  
Sung Ho Cho ◽  
Young Soo Kim ◽  
No Joong Kim ◽  
Soon Sung Kwon ◽  
...  
Keyword(s):  

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5923
Author(s):  
Borja Saez-Mingorance ◽  
Antonio Escobar-Molero ◽  
Javier Mendez-Gomez ◽  
Encarnacion Castillo-Morales ◽  
Diego P. Morales-Santos

This work studies the feasibility of a novel two-step algorithm for infrastructure and object positioning, using pairwise distances. The proposal is based on the optimization algorithms, Scaling-by-Majorizing-a-Complicated-Function and the Limited-Memory-Broyden-Fletcher-Goldfarb-Shannon. A qualitative evaluation of these algorithms is performed for 3D positioning. As the final stage, smoothing filtering techniques are applied to estimate the trajectory, from the previously obtained positions. This approach can also be used as a synthetic gesture data generator framework. This framework is independent from the hardware and can be used to simulate the estimation of trajectories from noisy distances gathered with a large range of sensors by modifying the noise properties of the initial distances. The framework is validated, using a system of ultrasound transceivers. The results show this framework to be an efficient and simple positioning and filtering approach, accurately reconstructing the real path followed by the mobile object while maintaining low latency. Furthermore, these capabilities can be exploited by using the proposed algorithms for synthetic data generation, as demonstrated in this work, where synthetic ultrasound gesture data are generated.


Sign in / Sign up

Export Citation Format

Share Document