A Slot Loaded Circular Disk Antenna for Wideband Operation

Author(s):  
Saiyed Salim Sayeed ◽  
Gulman Siddiqui ◽  
Mukesh Kumar ◽  
Neelesh ◽  
J. A. Ansari ◽  
...  
Keyword(s):  
2008 ◽  
Vol 67 (14) ◽  
pp. 1239-1245
Author(s):  
V. N. Derkach ◽  
T. V. Bagmut ◽  
R. V. Golovashchenko ◽  
V. G. Korzh ◽  
S. V. Nedukh ◽  
...  

2021 ◽  
Vol 18 (2) ◽  
pp. 172988142199958
Author(s):  
Shundao Xie ◽  
Hong-Zhou Tan

In recent years, the application of two-dimensional (2D) barcode is more and more extensive and has been used as landmarks for robots to detect and peruse the information. However, it is hard to obtain a sharp 2D barcode image because of the moving robot, and the common solution is to deblur the blurry image before decoding the barcode. Image deblurring is an ill-posed problem, where ringing artifacts are commonly presented in the deblurred image, which causes the increase of decoding time and the limited improvement of decoding accuracy. In this article, a novel approach is proposed using blur-invariant shape and geometric features to make a blur-readable (BR) 2D barcode, which can be directly decoded even when seriously blurred. The finder patterns of BR code consist of two concentric rings and five disjoint disks, whose centroids form two triangles. The outer edges of the concentric rings can be regarded as blur-invariant shapes, which enable BR code to be quickly located even in a blurred image. The inner angles of the triangle are of blur-invariant geometric features, which can be used to store the format information of BR code. When suffering from severe defocus blur, the BR code can not only reduce the decoding time by skipping the deblurring process but also improve the decoding accuracy. With the defocus blur described by circular disk point-spread function, simulation results verify the performance of blur-invariant shape and the performance of BR code under blurred image situation.


A detailed study has been made of the conditions under which uncharged water drops of radius 60 to 200 μm coalesce or rebound at a clean water/air interface. The variable para-­meters in the system are the drop radius, r , its impact velocity, V i , and the angle of impact, θ i ; and the dependent parameters are the time of contact, T , between a rebounding drop and the water surface, the velocity, V b , and the angle θ b with which it leaves the surface. All these have been measured. Relations are established between the drop radius and the critical values of V i and θ i at which coalescence occurs between uncharged drops and plane or convex water surfaces. Drops impacting at nearly normal incidence remain in contact with the surface for about 1 ms, lose about 95 % of their kinetic energy during impact, and rebound with an effective coefficient of restitution of about 0.2. Drops carrying a net charge and drops polarized in an applied electric field coalesce more readily than uncharged drops of the same size and impact velocity. The magnitudes of the critical charges and critical fields required to cause coalescence are determined as functions of V i , θ i and drop radius. Typically, drops of radius 150 μm impacting at 100 cm/s coalesce if the charge exceeds about 10 -4 e. s. u. or if the field exceeds about 100 V/cm. If the motion of a drop rebounding from a plane water surface is treated as simple harmonic and undamped, one may derive expressions for the depth of the crater, x and the restoring force, F , at any stage, and also for the time of contact. These yield values that are in reasonable accord with experiment. However, the collision is clearly inelastic, and a second solution is obtained when F is assumed to be proportional, not only to the displacement, x , but to x/t . This leads to a slightly different expression for the time of contact and to a calculated energy loss of 84 % compared with the measured value of 95 %. If the drop is to coalesce with the water surface, it must first expel and rupture the intervening air film. Treating the undersurface of the drop as a flattened circular disk, an expression is determined for the minimum thickness, δ, achieved by the film during the period of contact, in terms of V i , θ i and the drop radius r . This predicts values of δ ~ 0.1 μm below which fusion may well take place under the influence of van der Waals forces. Several features of the observed relations between V i , θ i and r are accounted for by this simplified theory, but the behaviour of drops impacting at nearly glancing incidence, and of relatively large, energetic drops impacting nearly normally is not. In the latter case, the observed distortion of the drop is thought to play an important role in permitting more rapid thinning of the air film and, in the case of charged and polarized drops, by producing intense local electric fields that may cause the final rupture.


Sign in / Sign up

Export Citation Format

Share Document