Increasing hyperspectral image classification accuracy for data sets with limited training samples by sample interpolation

Author(s):  
Begum Demir ◽  
Sarp Erturk
Author(s):  
P. Zhong ◽  
Z. Q. Gong ◽  
C. Schönlieb

In recent years, researches in remote sensing demonstrated that deep architectures with multiple layers can potentially extract abstract and invariant features for better hyperspectral image classification. Since the usual real-world hyperspectral image classification task cannot provide enough training samples for a supervised deep model, such as convolutional neural networks (CNNs), this work turns to investigate the deep belief networks (DBNs), which allow unsupervised training. The DBN trained over limited training samples usually has many “dead” (never responding) or “potential over-tolerant” (always responding) latent factors (neurons), which decrease the DBN’s description ability and thus finally decrease the hyperspectral image classification performance. This work proposes a new diversified DBN through introducing a diversity promoting prior over the latent factors during the DBN pre-training and fine-tuning procedures. The diversity promoting prior in the training procedures will encourage the latent factors to be uncorrelated, such that each latent factor focuses on modelling unique information, and all factors will be summed up to capture a large proportion of information and thus increase description ability and classification performance of the diversified DBNs. The proposed method was evaluated over the well-known real-world hyperspectral image dataset. The experiments demonstrate that the diversified DBNs can obtain much better results than original DBNs and comparable or even better performances compared with other recent hyperspectral image classification methods.


2014 ◽  
Vol 687-691 ◽  
pp. 3644-3647 ◽  
Author(s):  
Li Guo Wang ◽  
Yue Shuang Yang ◽  
Ting Ting Lu

Hyperspectral image classification is difficult due to the high dimensional features but limited training samples. Tri-training learning is a widely used semi-supervised classification method that addresses the problem of lacking of labeled examples. In this paper, a novel semi-supervised learning algorithm based on tri-training method is proposed. The proposed algorithm combines margin sampling (MS) technique and differential evolution (DE) algorithm to select the most informative samples and perturb them randomly. Then the samples we obtained, which can fulfill the labeled data distribution and introduce diversity to multiple classifiers, are added to training set to train base classifiers for tri-training. The proposed algorithm is experimentally validated using real hyperspectral data sets, indicating that the combination of MS and DE can significantly reduce the need of labeled samples while achieving high accuracy compared with state-of-the-art algorithms.


Author(s):  
Hariharan S Et al.

Feature extraction is a crucial step in Hyperspectral Image classification that aids in processing data effectively without losing relevant information. This step is essential when dealing with images with high dimensions because they suffer from Hughes phenomenon or the curse of high dimensionality. This phenomenon occurs in high dimensional datasets where the number of training samples is limited. In this paper, we have studied the influence of feature extraction techniques in HSI classification. We have compared the efficiency of three widely used techniques, namely Principal Component Analysis, t- Stochastic Neighbor Embedding and Convolutional Neural Network. Overall classification accuracy for PCA when used with KNN, a commonly used classification algorithm was found to be 69.79% while t-SNE with KNN was 71.04%. When CNN was used for feature extraction, its outperformed t-SNE and PCA with a wide margin with classification accuracy reaching as high as 95.06%.


Author(s):  
P. Zhong ◽  
Z. Q. Gong ◽  
C. Schönlieb

In recent years, researches in remote sensing demonstrated that deep architectures with multiple layers can potentially extract abstract and invariant features for better hyperspectral image classification. Since the usual real-world hyperspectral image classification task cannot provide enough training samples for a supervised deep model, such as convolutional neural networks (CNNs), this work turns to investigate the deep belief networks (DBNs), which allow unsupervised training. The DBN trained over limited training samples usually has many “dead” (never responding) or “potential over-tolerant” (always responding) latent factors (neurons), which decrease the DBN’s description ability and thus finally decrease the hyperspectral image classification performance. This work proposes a new diversified DBN through introducing a diversity promoting prior over the latent factors during the DBN pre-training and fine-tuning procedures. The diversity promoting prior in the training procedures will encourage the latent factors to be uncorrelated, such that each latent factor focuses on modelling unique information, and all factors will be summed up to capture a large proportion of information and thus increase description ability and classification performance of the diversified DBNs. The proposed method was evaluated over the well-known real-world hyperspectral image dataset. The experiments demonstrate that the diversified DBNs can obtain much better results than original DBNs and comparable or even better performances compared with other recent hyperspectral image classification methods.


Sign in / Sign up

Export Citation Format

Share Document