Optimization of probability of false alarm and probability of detection in cognitive radio networks using GA

Author(s):  
Subhasree Bhattacharjee ◽  
Priyanka Das ◽  
Swarup Mandal ◽  
Bhaskar Sardar
2021 ◽  
Vol 22 (2) ◽  
pp. 161-167
Author(s):  
Chilakala Sudhamani

In cognitive radio networks spectrum sensing plays a vital role to identify the presence or absence of the primary user. In conventional spectrum sensing one secondary user will make a final decision regarding the availability of licensed spectrum. But Secondary user fail to make a correct detection about the presence of the primary user if he is in fading environment and it causes interference to the licensed users. Therefore to avoid interference to the licensed users and to make correct detection, number of samples is increased, Which increases the probability of detection. In this paper the optimization of samples is proposed to reduce the system overhead and also to increase the propagation time. Simulation results show the optimized value of samples for a given probability of false alarm and also the variation of probability of detection with optimized samples and false alarm is shown in the results. ABSTRAK: Dalam rangkaian radio kognitif, penginderaan spektrum memainkan peranan penting untuk mengenal pasti kehadiran atau ketiadaan pengguna utama. Dalam penginderaan spektrum konvensional, seorang pengguna sekunder akan membuat keputusan akhir mengenai ketersediaan spektrum berlesen. Tetapi pengguna Sekunder gagal membuat pengesanan yang betul mengenai kehadiran pengguna utama jika dia berada dalam persekitaran yang pudar dan menyebabkan gangguan kepada pengguna yang berlesen. Oleh itu untuk mengelakkan gangguan kepada pengguna berlesen dan membuat pengesanan yang betul, jumlah sampel meningkat, yang meningkatkan kemungkinan pengesanan. Dalam makalah ini pengoptimuman sampel dicadangkan untuk mengurangi overhead sistem dan juga untuk meningkatkan waktu penyebaran. Hasil simulasi menunjukkan nilai sampel yang dioptimumkan untuk kebarangkalian penggera palsu dan juga variasi kebarangkalian pengesanan dengan sampel yang dioptimumkan dan penggera palsu ditunjukkan dalam hasil.


Author(s):  
Mohamed Hamid ◽  
Niclas Björsell ◽  
Abbas Mohammed

In this chapter the authors propose a new approach for optimizing the sensing time and periodic sensing interval for energy detectors in cognitive radio networks. The optimization of the sensing time depends on maximizing the summation of the probability of right detection and transmission efficiency, while the optimization of periodic sensing interval is subject to maximizing the summation of transmission efficiency and captured opportunities. Since the optimum sensing time and periodic sensing interval are dependent on each other, an iterative approach to optimize them simultaneously is proposed and a convergence criterion is devised. In addition, the probability of detection, probability of false alarm, probability of right detection, transmission efficiency, and captured opportunities are taken as performance metrics for the detector and evaluated for various values of channel utilization factors and signal-to-noise ratios.


2014 ◽  
Vol 643 ◽  
pp. 105-110
Author(s):  
Yuan Li ◽  
Jia Yin Chen ◽  
Xiao Feng Liu ◽  
Ming Chuan Yang

Aiming at the situation where the double-threshold detection has been widely used without complete mathematical proof and condition of application, this paper proves its correctness under the circumstance of spectrum sensing, and circulates the condition where this method can work. The proof and simulation show that, comparing with traditional energy detection, this method can increase the probability of detection by 27% to 42% at most when the SNR is between-15dB and-2dB, while the probability of false alarm is increased by less than 2%.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
H. F. Al-Doseri ◽  
M. A. Mangoud

One of the main challenges in cognitive radio networks is the ability of secondary users to detect the primary user presence with high probability of detection. In previous research, optimizing cooperative sensing in cognitive radio networks is performed for either a targeted probability of detection or a false alarm. After setting one of the probabilities as an optimization constraint, the other is optimized. In this paper, a guaranteed constant throughput at the secondary users is introduced as a target while optimizing probability of detection for cooperative sensing. Both sensing time values and number of cooperated cognitive radio secondary users are investigated to maximize the probability of detection of primary user. AND and OR hard decision schemes are considered and compared with soft decision scheme which is weighted modified deflection coefficient scheme (W-MDC). It is illustrated that cooperation of all users and utilizing full frames for sensing time will not provide maximum probability of detection. A tradeoff between performances of cognitive radio networks with and without optimization is presented. The effects of varying network sizes, normalized target throughput, maximum frame duration times, and received signal-to-noise ratio at the fusion center are investigated for different fusion rules.


2020 ◽  
Author(s):  
Kenan KOÇKAYA ◽  
İbrahim DEVELİ

Abstract Cognitive radio is a technology developed for the effective use of radio spectrum sources. The spectrum sensing function plays a key role in the performance of cognitive radio networks. In this study, we propose an online learning algorithm for the energy detection scheme, which aims to maximizing spectrum detection performance. Optimal threshold value, which is critical for the determination of the absence or the presence of a licensed user, was mathematically expressed in accordance with the balance between probability of detection and probability of false alarm. Performance of the proposed algorithm was tested on non-fading and different fading channels for low signal-to-noise ratio (SNR) regime with noise uncertainty. In conclusion of the simulation studies, improvement in spectrum detection performance according to optimal threshold value selection was observed.


Author(s):  
Mr. Dharmesh Dhabliya, Prof. Ojaswini Ghodkande

Security is the prominent problem in emerging cognitive radio. Protecting the chief user’s and sub-ordinate user’s right to use the spectrum results in the correct cognitive radio operation. The major user emulation attack is a physical layer attack which disrupts the secondary user’s operation. An Advanced Encryption Standard scheme is used in this work that aims to defeat the chief User Emulation Attack by the correct detection of the chief user. The reference signal is encrypted and transmitted along with the Digital TV signal. Using a shared secret the receiver regenerates the reference and the cross association and the auto correlation are calculated which helps in the accurate detection of the chief user as well as the malicious user. The simulations were carried out and the results show that the detection scheme results in zero misdetection and also false alarm which is below a set threshold.


Cooperative relay based spectrum sensing techniques are primarily available techniques in the field of research in cognitive radio networks. Even such techniques are available there is need to consider fundamental effects on spectrum sensing with various combination of scenarios that lead to false alarm detection. In this paper we have compared the three cases of cooperative spectrum sensing to analyze the effects and to form the direction of further research expectations in the field of cooperative spectrum sensing


Sign in / Sign up

Export Citation Format

Share Document