Fully-scalable 2D THz radiating array: A 42-element source in 130-nm SiGe with 80-µW total radiated power at 1.01 THz

Author(s):  
Zhi Hu ◽  
Ruonan Han
Keyword(s):  
Author(s):  
Tianlin Wang ◽  
Christopher S. Ruf ◽  
Scott Gleason ◽  
Andrew J. O'Brien ◽  
Darren S. McKague ◽  
...  

2021 ◽  
Vol 92 (2) ◽  
pp. 023502
Author(s):  
J. Lovell ◽  
M. L. Reinke ◽  
U. A. Sheikh ◽  
R. Sweeney ◽  
P. Puglia ◽  
...  
Keyword(s):  

1998 ◽  
Vol 59 (4) ◽  
pp. 587-610 ◽  
Author(s):  
P. E. VANDENPLAS ◽  
A. M. MESSIAEN ◽  
J. P. H. E. ONGENA ◽  
U. SAMM ◽  
B. UNTERBERG

From 1990, the boronized TEXTOR tokamak was characterized by an improved confinement (coined the ‘I mode’) at high power that was substantially better than the L mode, but densities had to be limited to n[bar]e0/nGR[lsim ]0.5–0.6, where nGR is the Greenwald density limit. With the injection of Ne, Si or Ar in order to increase the edge radiation and provided that γ=Prad/Ptot[greater, similar]0.5, PNBI-co/Ptot[greater, similar]0.25 and n[bar]e0/nGR[greater, similar]0.75, a further improved confinement called the radiative improved mode (RI mode) was discovered in 1993 on TEXTOR, a tokamak of intermediate size, and confirmed on TEXTOR-94. The radiated power fraction γ can reach 0.9, and the radiation is nearly isotropically distributed over the torus wall. The RI mode is characterized by its ability to obtain simultaneously and stationarily high densities and high confinement. It is linked to a substantial lowering of edge ne, Te and Ti, a reduction in particle transport and a peaking of the density profile. The RI-mode confinement scales on TEXTOR as τE= (n[bar]e0/nGR)τITERH93-P and values up to n[bar]e0/nGR≈1.2 are obtained. There is no detrimental concentration of the seeded impurity at the centre of the plasma. Results of three different interpretative and modelling approaches are in agreement with the improved confinement features; the preliminary indications are that ITG turbulence is strongly reduced. The Z mode observed on ISX-B has a clear resemblance to the RI mode. The very favourable features of the RI mode justify efforts in trying to establish it on larger machines to verify if the present scaling then holds.


The feasibility and utility of long-distance communication via Earth-orbiting satellites has been demonstrated during recent years and it is appropriate therefore to focus attention on the more important scientific studies and technical developments that will be needed if full use is to be made of this valuable mode of communication in the future. The early communication satellites (the Telstar and Relay series) were pioneers in a relatively unknown propagation environment. The satellites themselves were conceptually simple and the communication equipment consisted essentially of a frequency-changing transponder with an r. f. power output of a few watts and a bandwidth some tens of megahertz. Carrier frequencies in the range 2 to 6 GHz were employed; typically either 2 or 6 GHz was used for transmission and 4 GHz for reception at the Earth station. To obtain an adequate signal/noise ratio at the output of the Earth station receiver, frequency modulation was employed, the frequency deviations being greater than those used on terrestrial microwave links. Launcher limitations and other factors meant that the satellites had to be placed in inclined elliptical orbits (see figure 1) with maximum heights of only a few thousand miles. Nevertheless, these satellites demonstrated that some hundreds of frequency-division multiplex telephony circuits, or a television channel, could be achieved with generally satisfactory quality of transmission. It is to be noted, however, that the satellite transponders accommodated only one, or at the most two, r. f. carriers at any time, and that the transmission performance was at times marginal due to limitations of the satellite effective radiated power. Furthermore, these relatively low orbit satellites provided communication in periods of generally less than an hour at a time and required continuous tracking by the Earth station aerials, due to movement of the satellites relative to the Earth.


Sign in / Sign up

Export Citation Format

Share Document