Overhead Work Assist with Passive Gravity Compensation Mechanism and Horizontal Link Mechanism for Agriculture*

Author(s):  
Yasuyuki Yamada ◽  
Hirokazu Arakawa ◽  
Taro Watanabe ◽  
Shunya Fukuyama ◽  
Rie Nishihama ◽  
...  
2016 ◽  
Vol 22 (9) ◽  
pp. 733-737
Author(s):  
DongGyu Lee ◽  
SangHo Lee ◽  
JungWhan Park ◽  
TaeWon Seo

2005 ◽  
Vol 17 (5) ◽  
pp. 553-559 ◽  
Author(s):  
Yoshiki Ono ◽  
◽  
Toshio Morita ◽  

We propose generating and erasing equilibrium points for passive joints, together with an underactuated manipulator having both vertical and horizontal planar type. This manipulator implements three degrees of freedom (DOF) by combining a passive two-DOF mechanical gravity canceller and an active base joint. Equilibrium points are erased and adjusted by angular variation of the base joint so equilibrium points are erased when gravity torque is zero. If gravity torque is not zero, equilibrium points depend on angular variation of the base joint. Experimental results show position control of the distal link through the mechanical gravity canceller is effective for underactuated manipulation.


2022 ◽  
Vol 12 (1) ◽  
pp. 451
Author(s):  
Han-Sol Choi ◽  
Dong-Yeon Kim ◽  
Jeong-Hoon Park ◽  
Jae Hyuk Lim ◽  
Tae Seong Jang

In this study, a passive truss-link mechanism applicable to large-scale deployable structures was designed to achieve successful deployment in space. First, we simplified the selected truss-link mechanisms to the two-dimensional geometry and calculated the degrees of freedom (DOF) to determine whether a kinematic over-constraint occurs. The dimensions of the truss-link structure were determined through a deployment kinematic analysis. Second, a deployment simulation with the truss-link was conducted using multibody dynamics (MBD) software. Finally, a deployment test was performed considering gravity compensation, and the results were compared with those of MBD simulation. The results of the deployment simulations were confirmed to be slightly faster than those of the deployment test due to friction effects existing in the joints and gravity compensation devices. To address this issue, inverse identification of the equivalent frictional torque (EFT) at the revolute joints in the deployment test was conducted through response surface methods (RSM) combined with the central composite design technique. As a result, we confirmed that the deployment angle history of the deployment simulation was similar to that of the deployment test.


Sign in / Sign up

Export Citation Format

Share Document