scholarly journals Graph-based Normalizing Flow for Human Motion Generation and Reconstruction

Author(s):  
Wenjie Yin ◽  
Hang Yin ◽  
Danica Kragic ◽  
Marten Bjorkman
2012 ◽  
Vol 1 (2) ◽  
pp. 161-179 ◽  
Author(s):  
Chen-Hui Hu ◽  
Qin-Huai Zhang ◽  
Wen-Chieh Lin

Author(s):  
Sho TAJIMA ◽  
Tokuo TSUJI ◽  
Yosuke SUZUKI ◽  
Tetsuyou WATANABE ◽  
Kenichi MOROOKA ◽  
...  

2020 ◽  
Vol 34 (07) ◽  
pp. 12281-12288
Author(s):  
Zhenyi Wang ◽  
Ping Yu ◽  
Yang Zhao ◽  
Ruiyi Zhang ◽  
Yufan Zhou ◽  
...  

Human-motion generation is a long-standing challenging task due to the requirement of accurately modeling complex and diverse dynamic patterns. Most existing methods adopt sequence models such as RNN to directly model transitions in the original action space. Due to high dimensionality and potential noise, such modeling of action transitions is particularly challenging. In this paper, we focus on skeleton-based action generation and propose to model smooth and diverse transitions on a latent space of action sequences with much lower dimensionality. Conditioned on a latent sequence, actions are generated by a frame-wise decoder shared by all latent action-poses. Specifically, an implicit RNN is defined to model smooth latent sequences, whose randomness (diversity) is controlled by noise from the input. Different from standard action-prediction methods, our model can generate action sequences from pure noise without any conditional action poses. Remarkably, it can also generate unseen actions from mixed classes during training. Our model is learned with a bi-directional generative-adversarial-net framework, which can not only generate diverse action sequences of a particular class or mix classes, but also learns to classify action sequences within the same model. Experimental results show the superiority of our method in both diverse action-sequence generation and classification, relative to existing methods.


2013 ◽  
Vol 10 (02) ◽  
pp. 1350003 ◽  
Author(s):  
JUNG-YUP KIM ◽  
YOUNG-SEOG KIM

This paper describes a whole-body motion generation scheme for an android robot using motion capture and an optimization method. Android robots basically require human-like motions due to their human-like appearances. However, they have various limitations on joint angle, and joint velocity as well as different numbers of joints and dimensions compared to humans. Because of these limitations and differences, one appropriate approach is to use an optimization technique for the motion capture data. Another important issue in whole-body motion generation is the gimbal lock problem, where a degree of freedom at the three-DOF shoulder disappears. Since the gimbal lock causes two DOFs at the shoulder joint diverge, a simple and effective strategy is required to avoid the divergence. Therefore, we propose a novel algorithm using nonlinear constrained optimization with special cost functions to cope with the aforementioned problems. To verify our algorithm, we chose a fast boxing motion that has a large range of motion and frequent gimbal lock situations as well as dynamic stepping motions. We then successfully obtained a suitable boxing motion very similar to captured human motion and also derived a zero moment point (ZMP) trajectory that is realizable for a given android robot model. Finally, quantitative and qualitative evaluations in terms of kinematics and dynamics are carried out for the derived android boxing motion.


Sign in / Sign up

Export Citation Format

Share Document