Static and dynamic collision safety for human robot interaction using magneto-rheological fluid based compliant robot manipulator

Author(s):  
Muhammad Rehan Ahmed ◽  
Ivan Kalaykov
Author(s):  
Mustafa Can Bingol ◽  
Omur Aydogmus

Purpose Because of the increased use of robots in the industry, it has become inevitable for humans and robots to be able to work together. Therefore, human security has become the primary noncompromising factor of joint human and robot operations. For this reason, the purpose of this study was to develop a safe human-robot interaction software based on vision and touch. Design/methodology/approach The software consists of three modules. Firstly, the vision module has two tasks: to determine whether there is a human presence and to measure the distance between the robot and the human within the robot’s working space using convolutional neural networks (CNNs) and depth sensors. Secondly, the touch detection module perceives whether or not a human physically touches the robot within the same work environment using robot axis torques, wavelet packet decomposition algorithm and CNN. Lastly, the robot’s operating speed is adjusted according to hazard levels came from vision and touch module using the robot’s control module. Findings The developed software was tested with an industrial robot manipulator and successful results were obtained with minimal error. Practical implications The success of the developed algorithm was demonstrated in the current study and the algorithm can be used in other industrial robots for safety. Originality/value In this study, a new and practical safety algorithm is proposed and the health of people working with industrial robots is guaranteed.


2021 ◽  
Author(s):  
Xiangyun Li ◽  
QI LU ◽  
Jiali Chen ◽  
Kang Li

In this work, the uncertainty and disturbance estimator (UDE)-based robust region tracking controller for a robot manipulator is developed to achieve the moving target region trajectory tracking and the compliant human-robot interaction simultaneously. Utilizing the back-stepping control approach, the UDE is seamlessly fused into the region tracking control framework to estimate and compensate the model uncertainty and external disturbance, such as unknown payload, unmodeled joint coupling effect and friction. The regional feedback error is derived from the potential function to drive the robot manipulator end-effector converging into the target region, where the robot manipulator can be passively manipulated based on the needs of human to achieve the compliant physical human-robot interaction. Extensive experimental studies are carried out with a universal robots 10 manipulator to validate the effectiveness of the proposed method for moving region trajectory tracking, handling unknown payload and compliant physical human-robot interaction. The superior robustness of the proposed approach is demonstrated by comparison with the existing controller under the adverse effect of unknown payload. The humanrobot interaction is achieved in a shared autonomy manner with the cooperation of the manipulator and the human subject to accomplish the temperature measurement task, where the variation in human-subject height and the complexity of aiming the thermometer are successfully accommodated.


Author(s):  
Yu She ◽  
Hai-Jun Su ◽  
Cheng Lai ◽  
Deshan Meng

In this paper, we present a tunable stiffness robot link for safe human-robot interaction. Stiffness of a manipulator determines the injury levels of a human from an impact between robots and operators, given a specific impact velocity. Compliance of a robot manipulator includes joint compliance and link compliance. Variable stiffness design from the viewpoint of actuators have been widely studied, while adjustable stiffness robotic link in the application of human robot interaction is rare in literatures. This paper details the design of a tunable stiffness robotic manipulator via four bar linkages which are actuated by servo motors. A 3D model of the morphing beam is constructed, and a robot which is made up of 3 morphing arms is designed. Prototypes using 3D printer are fabricated. Numerous tests have been done, and the results show that the stiffness is able to change 3.6 times given a morphing angle of π/4. Given an impact velocity of 2.2 m/s, the impact tests show that the acceleration has a 19.4% decrease comparing the curved beam and straight beam, and the head injury criteria (HIC) significantly decreases from 210.3 m5/2s−4 to 150.3 m5/2s−4, which is much safer to the operators. This paper explores the research of tunable stiffness on robotic links in the application of human robot interaction, expanding the research arena with regarding to human safe robot design.


Robotica ◽  
2020 ◽  
pp. 1-15
Author(s):  
Po-Jen Cheng ◽  
Hsiang-Yuan Ting ◽  
Han-Pang Huang

SUMMARY The variable stiffness actuator (VSA) is helpful to realize the post-collision safety strategies for safe human–robot interaction.1 The stiffness of the robot will be reduced to protect the user from injury when the collision between the robot and human occurs. However, The VSA has a mechanism limit constraint that can cause harm to users even if the stiffness is minimized. Accordingly, in this article, a concept combining danger index and robust fault detection and isolation is presented and applied to active–passive variable stiffness elastic actuator (APVSEA). APVSEA can actively change joint stiffness with the change of danger index. Experimental results show that this concept can effectively confirm the fault mode and provide additional protection measures to ensure the safety of users when the joint stiffness has been adjusted to the minimum.


2021 ◽  
Author(s):  
xiangyun Li ◽  
QI LU ◽  
Zhaoyang Chen ◽  
Qinlin Yang ◽  
Kang Li

n this work, the uncertainty and disturbance estimator (UDE)-based robust region reaching controller for a robot manipulator is developed to achieve the moving target region trajectory tracking and complaint human robot interaction inside the target region. The regional feedback error is derived from the potential function to drive the robot manipulator end effector converging into the target region. Under the back-stepping control framework, the UDE is fused into the region tracking control law to estimate and compensate the model uncertainty and external disturbance. Both simulation and experimental studies are carried out with a universal robots (UR) 10 manipulator to demonstrate the effectiveness of the proposed method for moving target trajectory tracking, model uncertainty and external disturbance rejection, and compliant human robot interaction within the target region.


2016 ◽  
Vol 20 (suppl. 2) ◽  
pp. 537-548 ◽  
Author(s):  
Paramin Neranon ◽  
Robert Bicker

With regard to both human and robot capabilities, human-robot interaction provides several benefits, and this will be significantly developed and implemented. This work focuses on the development of real-time external force/position control used for human-robot interaction. The force-controlled robotic system integrated with proportional integral control was performed and evaluated to ensure its reliably and timely operational characteristics, in which appropriate proportional integral gains were experimentally adopted using a set of virtual crank-turning tests. The designed robotic system is made up of a robot manipulator arm, an ATI Gamma multi-axis force/torque sensor and a real-time external PC based control system. A proportional integral controller has been developed to provide stable and robust force control on unknown environmental stiffness and motion. To quantify its effectiveness, the robotic system has been verified through a comprehensive set of experiments, in which force measurement and ALTER real-time path control systems were evaluated. In summary, the results indicated satisfactorily stable performance of the robot force/position control system. The gain tuning for proportional plus integral control algorithm was successfully implemented. It can be reported that the best performance as specified by the error root mean square method of the radial force is observed with proportional and integral gains of 0.10 and 0.005 respectively.


2021 ◽  
Author(s):  
xiangyun Li ◽  
QI LU ◽  
Zhaoyang Chen ◽  
Qinlin Yang ◽  
Kang Li

n this work, the uncertainty and disturbance estimator (UDE)-based robust region reaching controller for a robot manipulator is developed to achieve the moving target region trajectory tracking and complaint human robot interaction inside the target region. The regional feedback error is derived from the potential function to drive the robot manipulator end effector converging into the target region. Under the back-stepping control framework, the UDE is fused into the region tracking control law to estimate and compensate the model uncertainty and external disturbance. Both simulation and experimental studies are carried out with a universal robots (UR) 10 manipulator to demonstrate the effectiveness of the proposed method for moving target trajectory tracking, model uncertainty and external disturbance rejection, and compliant human robot interaction within the target region.


Sign in / Sign up

Export Citation Format

Share Document