Gait planning and control for biped robots based on modifiable key gait parameters from human motion analysis

Author(s):  
Hongbo Zhu ◽  
Minzhou Luo ◽  
Tao Mei ◽  
Tao Li
2009 ◽  
Vol 06 (04) ◽  
pp. 675-697 ◽  
Author(s):  
S. ALI A. MOOSAVIAN ◽  
MANSOOR ALGHOONEH ◽  
AMIR TAKHMAR

Biped robots possess higher capabilities than other mobile robots for moving on uneven environments. However, due to natural postural instability of these robots, their motion planning and control become a more important and challenging task. This article presents a Cartesian approach for gait planning and control of biped robots without the need to use the inverse kinematics and the joint space trajectories, thus the proposed approach could substantially reduce the processing time in both simulation studies and online implementations. It is based on constraining four main points of the robot in Cartesian space. This approach exploits the concept of Transpose Jacobian control as a virtual spring and damper between each of these points and the corresponding desired trajectory, which leads to overcome the redundancy problem. These four points include the tip of right and left foot, the hip joint, and the total center of mass (CM). Furthermore, in controlling biped robots based on desired trajectories in the task space, the system may track the desired trajectory while the knee is broken. This problem is solved here using a PD controller which will be called the Knee Stopper. Similarly, another PD controller is proposed as the Trunk Stopper to limit the trunk motion. Obtained simulation results show that the proposed Cartesian approach can be successfully used in tracking desired trajectories on various surfaces with lower computational effort.


2014 ◽  
Vol 62 (2) ◽  
pp. 229-240 ◽  
Author(s):  
In-sik Lim ◽  
Ohung Kwon ◽  
Jong Hyeon Park

2021 ◽  
Vol 10 ◽  
pp. 117957272110223
Author(s):  
Thomas Hellsten ◽  
Jonny Karlsson ◽  
Muhammed Shamsuzzaman ◽  
Göran Pulkkis

Background: Several factors, including the aging population and the recent corona pandemic, have increased the need for cost effective, easy-to-use and reliable telerehabilitation services. Computer vision-based marker-less human pose estimation is a promising variant of telerehabilitation and is currently an intensive research topic. It has attracted significant interest for detailed motion analysis, as it does not need arrangement of external fiducials while capturing motion data from images. This is promising for rehabilitation applications, as they enable analysis and supervision of clients’ exercises and reduce clients’ need for visiting physiotherapists in person. However, development of a marker-less motion analysis system with precise accuracy for joint identification, joint angle measurements and advanced motion analysis is an open challenge. Objectives: The main objective of this paper is to provide a critical overview of recent computer vision-based marker-less human pose estimation systems and their applicability for rehabilitation application. An overview of some existing marker-less rehabilitation applications is also provided. Methods: This paper presents a critical review of recent computer vision-based marker-less human pose estimation systems with focus on their provided joint localization accuracy in comparison to physiotherapy requirements and ease of use. The accuracy, in terms of the capability to measure the knee angle, is analysed using simulation. Results: Current pose estimation systems use 2D, 3D, multiple and single view-based techniques. The most promising techniques from a physiotherapy point of view are 3D marker-less pose estimation based on a single view as these can perform advanced motion analysis of the human body while only requiring a single camera and a computing device. Preliminary simulations reveal that some proposed systems already provide a sufficient accuracy for 2D joint angle estimations. Conclusions: Even though test results of different applications for some proposed techniques are promising, more rigour testing is required for validating their accuracy before they can be widely adopted in advanced rehabilitation applications.


2011 ◽  
Vol 403-408 ◽  
pp. 2593-2597
Author(s):  
Hong Bao ◽  
Zhi Min Liu

In the analysis of human motion, movement was divided into regular motion (such as walking and running) and random motion (such as falling down).Human skeleton model is used in this paper to do the video-based analysis. Key joints on human body were chosen to be traced instead of tracking the entire human body. Shape features like mass center trajectory were used to describe the movement, and to classify human motion. desired results achieved.


Sign in / Sign up

Export Citation Format

Share Document