End-to-End Timing Analysis of Black-Box Models in Legacy Vehicular Distributed Embedded Systems

Author(s):  
Saad Mubeen ◽  
Mikael Sjodin ◽  
Thomas Nolte ◽  
John Lundback ◽  
Mattias Galnander ◽  
...  

2021 ◽  
Author(s):  
Junjie Shi ◽  
Jiang Bian ◽  
Jakob Richter ◽  
Kuan-Hsun Chen ◽  
Jörg Rahnenführer ◽  
...  

AbstractThe predictive performance of a machine learning model highly depends on the corresponding hyper-parameter setting. Hence, hyper-parameter tuning is often indispensable. Normally such tuning requires the dedicated machine learning model to be trained and evaluated on centralized data to obtain a performance estimate. However, in a distributed machine learning scenario, it is not always possible to collect all the data from all nodes due to privacy concerns or storage limitations. Moreover, if data has to be transferred through low bandwidth connections it reduces the time available for tuning. Model-Based Optimization (MBO) is one state-of-the-art method for tuning hyper-parameters but the application on distributed machine learning models or federated learning lacks research. This work proposes a framework $$\textit{MODES}$$ MODES that allows to deploy MBO on resource-constrained distributed embedded systems. Each node trains an individual model based on its local data. The goal is to optimize the combined prediction accuracy. The presented framework offers two optimization modes: (1) $$\textit{MODES}$$ MODES -B considers the whole ensemble as a single black box and optimizes the hyper-parameters of each individual model jointly, and (2) $$\textit{MODES}$$ MODES -I considers all models as clones of the same black box which allows it to efficiently parallelize the optimization in a distributed setting. We evaluate $$\textit{MODES}$$ MODES by conducting experiments on the optimization for the hyper-parameters of a random forest and a multi-layer perceptron. The experimental results demonstrate that, with an improvement in terms of mean accuracy ($$\textit{MODES}$$ MODES -B), run-time efficiency ($$\textit{MODES}$$ MODES -I), and statistical stability for both modes, $$\textit{MODES}$$ MODES outperforms the baseline, i.e., carry out tuning with MBO on each node individually with its local sub-data set.



Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6749
Author(s):  
Reda El Bechari ◽  
Stéphane Brisset ◽  
Stéphane Clénet ◽  
Frédéric Guyomarch ◽  
Jean Claude Mipo

Metamodels proved to be a very efficient strategy for optimizing expensive black-box models, e.g., Finite Element simulation for electromagnetic devices. It enables the reduction of the computational burden for optimization purposes. However, the conventional approach of using metamodels presents limitations such as the cost of metamodel fitting and infill criteria problem-solving. This paper proposes a new algorithm that combines metamodels with a branch and bound (B&B) strategy. However, the efficiency of the B&B algorithm relies on the estimation of the bounds; therefore, we investigated the prediction error given by metamodels to predict the bounds. This combination leads to high fidelity global solutions. We propose a comparison protocol to assess the approach’s performances with respect to those of other algorithms of different categories. Then, two electromagnetic optimization benchmarks are treated. This paper gives practical insights into algorithms that can be used when optimizing electromagnetic devices.



2004 ◽  
Author(s):  
Tai S. Jang ◽  
Anthony Iyoho ◽  
S. S. Nair


We provide a framework for investment managers to create dynamic pretrade models. The approach helps market participants shed light on vendor black-box models that often do not provide any transparency into the model’s functional form or working mechanics. In addition, this allows portfolio managers to create consensus estimates based on their own expectations, such as forecasted liquidity and volatility, and to incorporate firm proprietary alpha estimates into the solution. These techniques allow managers to reduce overdependency on any one black-box model, incorporate costs into the stock selection and portfolio optimization phase of the investment cycle, and perform “what-if” and sensitivity analyses without the risk of information leakage to any outside party or vendor.



Author(s):  
Kacper Sokol ◽  
Peter Flach

Understanding data, models and predictions is important for machine learning applications. Due to the limitations of our spatial perception and intuition, analysing high-dimensional data is inherently difficult. Furthermore, black-box models achieving high predictive accuracy are widely used, yet the logic behind their predictions is often opaque. Use of textualisation -- a natural language narrative of selected phenomena -- can tackle these shortcomings. When extended with argumentation theory we could envisage machine learning models and predictions arguing persuasively for their choices.



Author(s):  
Marjan Popov ◽  
Bjørn Gustavsen ◽  
Juan A. Martinez-Velasco

Voltage surges arising from transient events, such as switching operations or lightning discharges, are one of the main causes of transformer winding failure. The voltage distribution along a transformer winding depends greatly on the waveshape of the voltage applied to the winding. This distribution is not uniform in the case of steep-fronted transients since a large portion of the applied voltage is usually concentrated on the first few turns of the winding. High frequency electromagnetic transients in transformers can be studied using internal models (i.e., models for analyzing the propagation and distribution of the incident impulse along the transformer windings), and black-box models (i.e., models for analyzing the response of the transformer from its terminals and for calculating voltage transfer). This chapter presents a summary of the most common models developed for analyzing the behaviour of transformers subjected to steep-fronted waves and a description of procedures for determining the parameters to be specified in those models. The main section details some test studies based on actual transformers in which models are validated by comparing simulation results to laboratory measurements.



Author(s):  
Evren Daglarli

Today, the effects of promising technologies such as explainable artificial intelligence (xAI) and meta-learning (ML) on the internet of things (IoT) and the cyber-physical systems (CPS), which are important components of Industry 4.0, are increasingly intensified. However, there are important shortcomings that current deep learning models are currently inadequate. These artificial neural network based models are black box models that generalize the data transmitted to it and learn from the data. Therefore, the relational link between input and output is not observable. For these reasons, it is necessary to make serious efforts on the explanability and interpretability of black box models. In the near future, the integration of explainable artificial intelligence and meta-learning approaches to cyber-physical systems will have effects on a high level of virtualization and simulation infrastructure, real-time supply chain, cyber factories with smart machines communicating over the internet, maximizing production efficiency, analysis of service quality and competition level.





Sign in / Sign up

Export Citation Format

Share Document