ROSCH:Real-Time Scheduling Framework for ROS

Author(s):  
Yukihiro Saito ◽  
Futoshi Sato ◽  
Takuya Azumi ◽  
Shinpei Kato ◽  
Nobuhiko Nishio
Keyword(s):  
1994 ◽  
Vol 30 (4) ◽  
pp. 169-179 ◽  
Author(s):  
Carl Demuynck ◽  
Peter Vanrolleghem ◽  
Carine Mingneau ◽  
Jan Liessens ◽  
Willy Verstraete

In SBR plants for nutrient removal it is often necessary to add supplementary rbCOD during the anoxic phase to obtain complete nitrogen removal. In addition to the aeration, this supply of high-quality BOD is a non-negligible part in the operating costs. Because of the complexity of the bighly interconnected biological processes a heuristic approach for process optimization is hardly possible. Therefore the Nitrification Denitrification Biological Excess Phosphorus Removal (NDBEPR) model of Wentzel et al. and a numerical optimization a1goritbm were used to optimize SBR time scheduling, i.e. minimize both effluent concentrations and operating costs. It was found that a sequence of short aerobic/anoxic phases appears to be better than the usual sequence (one aerobic phase followed by one anoxic phase). This result was validated on a 500 I scale SBR. The optimized process saves up to 50% on extra BOD supply and up to 30% on aeration time. Moreover, it was shown that these cost savings were not at the expense of the phosphorus removal efficiency or the nitrification rate. From an additional numerical optimization it was seen that the ideal SBR time scheduling may depend on the loading. Therefore. a control strategy hased on OUR and ORP measurements is proposed.


2021 ◽  
Author(s):  
Antoine Bertout ◽  
Joël Goossens ◽  
Emmanuel Grolleau ◽  
Roy Jamil ◽  
Xavier Poczekajlo

2021 ◽  
Vol 13 (6) ◽  
pp. 3400
Author(s):  
Jia Ning ◽  
Sipeng Hao ◽  
Aidong Zeng ◽  
Bin Chen ◽  
Yi Tang

The high penetration of renewable energy brings great challenges to power system operation and scheduling. In this paper, a multi-timescale coordinated method for source-grid-load is proposed. First, the multi-timescale characteristics of wind forecasting power and demand response (DR) resources are described, and the coordinated framework of source-grid-load is presented under multi-timescale. Next, economic scheduling models of source-grid-load based on multi-timescale DR under network constraints are established in the process of day-ahead scheduling, intraday scheduling, and real-time scheduling. The loads are classified into three types in terms of different timescale. The security constraints of grid side and time-varying DR potential are considered. Three-stage stochastic programming is employed to schedule resources of source side and load side in day-ahead, intraday, and real-time markets. The simulations are performed in a modified Institute of Electrical and Electronics Engineers (IEEE) 24-node system, which shows a notable reduction in total cost of source-grid-load scheduling and an increase in wind accommodation, and their results are proposed and discussed against under merely two timescales, which demonstrates the superiority of the proposed multi-timescale models in terms of cost and demand response quantity reduction.


Sign in / Sign up

Export Citation Format

Share Document