BER analysis of dual-hop relaying system with energy harvesting in nakagami-m fading channel

Author(s):  
Mohammadreza Babaei ◽  
Umit Aygolu
2021 ◽  
pp. 82-90
Author(s):  
Kehinde O. Odeyemi ◽  
◽  
Pius A. Owolawi

In this paper, the performance of an Energy Harvesting (EH) enabled full-duplex cooperative decode-and-forward (DF) relaying system is investigated over the Fisher-Snedecor F-fading channel. The system energy-constrained relay unit utilizes time-switching relay protocol for scavenging energy from the source signal and information transmission to the destination. To quantify the system performance, the exact analytical closed-form expression for the system outage probability is derived, and then used to obtain the analytical expression for the average throughput of delay-limited transmission mode. Moreover, the exact closed-form expression for the system Ergodic capacity is derived through which the average delay-tolerant throughput is determined for the system. In addition, the results demonstrate the impact of fading and shadowing severity on the system performance. It also is noticeable from the results that the performance of system is strongly affected by the loop back interference from the relay node. Finally, the accuracy of the derived analytical expressions is then validated through the Monte-Carlo simulation.


2018 ◽  
Vol 17 (7) ◽  
pp. 4352-4361 ◽  
Author(s):  
Mohammadreza Babaei ◽  
Umit Aygolu ◽  
Ertugrul Basar

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Phu Tran Tin ◽  
Phan Van-Duc ◽  
Tan N. Nguyen ◽  
Le Anh Vu

In this paper, we investigate the full-duplex (FD) decode-and-forward (DF) cooperative relaying system, whereas the relay node can harvest energy from radiofrequency (RF) signals of the source and then utilize the harvested energy to transfer the information to the destination. Specifically, a hybrid time-power switching-based relaying method is adopted, which leverages the benefits of time-switching relaying (TSR) and power-splitting relaying (PSR) protocols. While energy harvesting (EH) helps to reduce the limited energy at the relay, full-duplex is one of the most important techniques to enhance the spectrum efficiency by its capacity of transmitting and receiving signals simultaneously. Based on the proposed system model, the performance of the proposed relaying system in terms of the ergodic capacity (EC) is analyzed. Specifically, we derive the exact closed form for upper bound EC by applying some special function mathematics. Then, the Monte Carlo simulations are performed to validate the mathematical analysis and numerical results.


2014 ◽  
Vol 18 (10) ◽  
pp. 1863-1866 ◽  
Author(s):  
Zoran Hadzi-Velkov ◽  
Nikola Zlatanov ◽  
Robert Schober

Sign in / Sign up

Export Citation Format

Share Document