A frequency control approach based on wind generation operating as virtual synchronous generator

Author(s):  
Heitor Jose Tessaro ◽  
Ricardo Vasques de Oliveira ◽  
Bruno Augusto Bastiani
Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 433 ◽  
Author(s):  
Jiangbei Han ◽  
Zhijian Liu ◽  
Ning Liang ◽  
Qi Song ◽  
Pengcheng Li

With the increasing penetration of the hybrid AC/DC microgrid in power systems, an inertia decrease of the microgrid is caused. Many scholars have put forward the concept of a virtual synchronous generator, which enables the converters of the microgrid to possess the characteristics of a synchronous generator, thus providing inertia support for the microgrid. Nevertheless, the problems of active power oscillation and unbalance would be serious when multiple virtual synchronous generators (VSGs) operate in the microgrid. To conquer these problems, a VSG-based autonomous power-frequency control strategy is proposed, which not only independently allocates the power grid capacity according to the load capacity, but also effectively suppresses the active power oscillation. In addition, by establishing a dynamic small-signal model of the microgrid, the dynamic stability of the proposed control strategy in the microgrid is verified, and further reveals the leading role of the VSG and filter in the dynamic stability of microgrids. Finally, the feasibility and effectiveness of the proposed control strategy are validated by the simulation results.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2037
Author(s):  
Jun Deng ◽  
Jianbo Wang ◽  
Shupeng Li ◽  
Haijing Zhang ◽  
Shutao Peng ◽  
...  

With the continuous development of wind power capacity, a large number of wind turbines connected by power electronic devices make the system inertia lower, which leads to the problem of system frequency stability degradation. The virtual synchronous generator (VSG) control can make wind turbines possess inertia and damping. However, the stochastic dynamic behavior of wind generation results in the stochastic changing of operating condition; this paper presents an adaptive subsynchronous oscillation (SSO) damping control method for the wind generation with VSG control. Firstly, the small signal model of the permanent magnet synchronous generator (PMSG) with VSG is built, and the model of state space is derived and built. The active power of PMSG is selected as the variable parameter vector to establish a polytopic linear variable parameter system model. Then, based on the hybrid H2/H∞ control method, each vertex state feedback matrix is solved by linear matrix inequality, and a subsynchronous oscillation adaptive damping controller with polytope is obtained. Finally, the 4-machine 2-area system connected to two PMSGs with VSG control is used as the test system for time domain simulation. The simulation results demonstrate that the LPV based adaptive damping controller could provide enough damping under the circumstances of wider changes of wind power outputs.


Sign in / Sign up

Export Citation Format

Share Document