Secondary Frequency Control for a Microgrid with Wind /Storages Based on Improved Virtual Synchronous Generator

Author(s):  
Zijiao Han ◽  
Xiaodong Chen ◽  
Chenqi Wang ◽  
Xin Wang ◽  
Baoshi Wang ◽  
...  
2020 ◽  
Vol 11 (3) ◽  
pp. 2734-2736
Author(s):  
Kun Jiang ◽  
Hongsheng Su ◽  
Hongjian Lin ◽  
Kaizhong He ◽  
Hanghang Zeng ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 433 ◽  
Author(s):  
Jiangbei Han ◽  
Zhijian Liu ◽  
Ning Liang ◽  
Qi Song ◽  
Pengcheng Li

With the increasing penetration of the hybrid AC/DC microgrid in power systems, an inertia decrease of the microgrid is caused. Many scholars have put forward the concept of a virtual synchronous generator, which enables the converters of the microgrid to possess the characteristics of a synchronous generator, thus providing inertia support for the microgrid. Nevertheless, the problems of active power oscillation and unbalance would be serious when multiple virtual synchronous generators (VSGs) operate in the microgrid. To conquer these problems, a VSG-based autonomous power-frequency control strategy is proposed, which not only independently allocates the power grid capacity according to the load capacity, but also effectively suppresses the active power oscillation. In addition, by establishing a dynamic small-signal model of the microgrid, the dynamic stability of the proposed control strategy in the microgrid is verified, and further reveals the leading role of the VSG and filter in the dynamic stability of microgrids. Finally, the feasibility and effectiveness of the proposed control strategy are validated by the simulation results.


Energy ◽  
2019 ◽  
Vol 189 ◽  
pp. 116389 ◽  
Author(s):  
Pengfei Li ◽  
Weihao Hu ◽  
Xiao Xu ◽  
Qi Huang ◽  
Zhou Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document