Performance Evaluation of Parallel Large-Scale Lattice Boltzmann Applications on Three Supercomputing Architectures

Author(s):  
T. Pohl ◽  
F. Deserno ◽  
N. Thurey ◽  
U. Rude ◽  
P. Lammers ◽  
...  
Fluids ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 148
Author(s):  
Seyed Amin Nabavizadeh ◽  
Himel Barua ◽  
Mohsen Eshraghi ◽  
Sergio D. Felicelli

A multi-distribution lattice Boltzmann Bhatnagar–Gross–Krook (BGK) model with a multiple-grid lattice Boltzmann (MGLB) model is proposed to efficiently simulate natural convection over a wide range of Prandtl numbers. In this method, different grid sizes and time steps for heat transfer and fluid flow equations are chosen. The model is validated against natural convection in a square cavity, since extensive benchmark solutions are available for that problem. The proposed method can resolve the computational difficulty in simulating problems with very different time scales, in particular, when using extremely low or high Prandtl numbers. The technique can also enhance computational speed and stability while keeping the simplicity of the BGK method. Compared with the conventional lattice Boltzmann method, the simulation time can be reduced up to one-tenth of the time while maintaining the accuracy in an acceptable range. The proposed model can be extended to other lattice Boltzmann collision models and three-dimensional cases, making it a great candidate for large-scale simulations.


1986 ◽  
Vol 108 (2) ◽  
pp. 269-274
Author(s):  
R. G. Williamson ◽  
S. H. Moustapha ◽  
J. P. Huot

Two nozzle designs, involving the same low aspect ratio, high turning angle vanes, and differing in outer wall contour, were tested over a range of exit Mach numbers up to supersonic values. The experiments were conducted on a large-scale, full annular configuration with and without a representative rotor downstream. Nozzle performance was found to be significantly affected by rotor operation, the influence depending on the detailed characteristics of the nozzle flow field, as well as on the design and operation of the rotor itself. It is suggested that performance evaluation of low aspect ratio nozzles of high turning angle may require appropriate testing with a rotor.


2007 ◽  
Author(s):  
Radhika Saksena ◽  
Peter V. Coveney ◽  
Robin Pinning ◽  
Stephen Booth

Sign in / Sign up

Export Citation Format

Share Document